Épreuves orales Centrale II avec Python

Table des matières

Épreuves orales : Centrale II - Python – MP										1
Épreuves orales : Centrale II - Python – PSI										16
Épreuves orales : Centrale II - Python – PC										28

Centrale II - Python – MP

Algèbre

- **1.** On dit que A,B, des parties non vides et finies de \mathbb{N} , sont en somme directe si, pour tout $z \in A+B$, il existe un unique couple $(a,b) \in A \times B$ tel que z=a+b. Si A et B sont en somme directe, on note $A \oplus B$ la somme A+B. Pour A partie non vide finie de \mathbb{N} (donnée sous forme d'une liste), on pose $P_A(X) = \sum X^k$.
- a) Écrire une fonction qui prend en entrée deux parties finies non vides de \mathbb{N} et qui renvoie True si elles sont en somme directe, False sinon. Tester avec des exemples.
- **b**) À l'aide du module numpy polynomial, écrire une fonction qui renvoie $P_A(X)$ pour A en entrée. Tester la fonction.
- c) Montrer que A et B sont en somme directe si et seulement si $P_A(X)P_B(X) = P_{A+B}(X)$. On suppose A et B en somme directe. Soit $n \in \mathbb{N}^*$. On dit que $A \oplus B$ est n-périodique si $\mathbb{Z} = (A \oplus B) \oplus n\mathbb{Z}$.
- d) Montrer que $A \oplus B$ est n-périodique si et seulement si, pour tout $j \in \{0, \dots, n-1\}$, il existe un unique $u \in A \oplus B$ tel que $u \equiv j[n]$.
- **e**) On note, pour tout $u \in A \oplus B$: $u = j_u + nk_u$.
 - i) Faire la division euclidienne de X^{k} par $X^{n}-1$. ii) En déduire qu'il existe $Q \in \mathbb{R}[X]$ tel que $P_{A}(X)P_{B}(X)=(X^{n}-1)Q(X)+\sigma_{n}(X)$,

où
$$\sigma_n(X) = \sum_{k=0}^{n-1} X^k$$
.

2. Soit $n \in \mathbb{N}^*$. On note S_n l'ensemble des permutations de $\{0, 1, \dots, n-1\}$.

- a) Une permutation $\sigma \in \mathcal{S}_n$ est représentée par la liste $[\sigma(0), \ldots, \sigma(n-1)]$.
- i) Écrire une fonction PYTHON prenant en argument deux permutations $\sigma, \tau \in \mathcal{S}_n$ et retournant la composée $\sigma \circ \tau$.
- ii) Écrire une fonction PYTHON cycles_disjoints qui prend en argument une permutation $\sigma \in \mathcal{S}_n$ et retourne une liste de listes représentant sa décomposition en cycles à supports disjoints.
- iii) Écrire une fonction PYTHON prenant en argument une permutation $\sigma \in \mathcal{S}_n$ et retournant le nombre de cycles non triviaux dans sa décomposition en cycles à supports disjoints. Pour $\sigma \in \mathcal{S}_n$, on note $L(\sigma)$ le cardinal de son support $Supp(\sigma)$, $C(\sigma)$ le nombre de cycles non triviaux dans sa décomposition en cycles à supports disjoints, $N(\sigma)$ le nombre d'orbites de σ , $T(\sigma)$ le nombre minimal de transpositions dont la composée vaut σ .
- **b)** Soit $\sigma \in \mathcal{S}_6$ représentée par [5, 1, 2, 4, 3, 0]. Calculer $L(\sigma), C(\sigma), N(\sigma), T(\sigma)$.
- c) i) Soit $\sigma \in \mathcal{S}_n$. Exprimer $N(\sigma)$ en fonction de $C(\sigma)$, $L(\sigma)$ et n.
- ii) On admet la propriété $(*): N(\tau \circ \sigma) = N(\sigma) \pm 1$ pour toute transposition τ . Montrer que $T(\sigma) \ge L(\sigma) - C(\sigma)$.
- iii) Montrer d'abord pour un cycle, puis pour une permutation quelconque, que $T(\sigma) =$ $L(\sigma) - C(\sigma)$.
 - iv) Montrer la propriété (*) admise en ii).
- **d**) On pose $S_{n+1,i} = \{ \sigma \in S_{n+1}, \ \sigma(n) = i \}$ pour $i \in [0,n]$. Donner une bijection entre $S_{n+1,i}$ et S_n .
- **3.** Soit $\sigma \in \mathcal{S}_n$. On dit que σ admet un record en $i \in \{1, \dots, n\}$ si $\forall j < i, \sigma(j) < \sigma(i)$. On note M(i, n) le nombre de permutations de S_n qui ont i records.
- a) On admet (pour l'instant) la relation de récurrence

$$M(i,n) = M(i-1,n) + (n-1)M(i,n-1).$$

- i) Programmer une fonction qui renvoie la matrice $A \in \mathcal{M}_{n+1}(\mathbb{R})$, de coefficients : $a_{i,j} = (-1)^{j-i} M(i,j).$
- ii) Montrer que À est inversible. Faire une conjecture, à partir de tests sur Python, de la

valeur de :
$$B(p,n) = \sum_{k=1}^{p} \binom{p}{k} k! \left[A^{-1}\right]_{k,n}$$
.

- **b)** i) Calculer M(1,n) et M(n,n).
 - ii) Démontrer la formule de récurrence admise au début.
- c) On pose, pour $k \in \mathbb{N}$: $P_k = \sum_{i=0}^n a_{i,k} X^i$.
- i) Établir une relation entre P_k et P_{k-1} , pour $k \ge 1$, et en déduire une factorisation de P_k . ii) Montrer que l'on peut exprimer les polynômes X^k en fonction des P_k et des coefficients de A^{-1} .
- **4.** On définit l'ensemble \mathcal{E} des entiers de \mathbb{N}^* tels qu'il existe $p_m \in \mathbb{N}$ tel que :

$$1+2+\cdots+(m-2)+(m-1)=(m+1)+(m+2)+\cdots+(m+p_m).$$

- a) On admet dans cette question que, pour tout $m \in \mathcal{E}$, $p_m \leq \lfloor m/2 \rfloor$
- i) Écrire une fonction qui reçoit en argument un entier N et renvoie la liste des entiers de l'ensemble $[1, N] \cap \mathcal{E}$.
 - ii) L'exécuter pour N = 10000.

iii) Écrire une fonction qui recoit en argument un entier $n \in \mathbb{N}^*$ et qui renvoie la somme

suivante : $m_n = \sum_{k=0}^{\lfloor \frac{n-1}{2} \rfloor} \binom{n}{2k+1} 8^k 3^{n-2k-1}$ Attention, cette fonction ne doit pas utiliser de

fonctions préexistantes calculant des coefficients binomiaux ou des factorielles.

- iv) Ouelle conjecture peut-on effectuer?
- **b**) i) Donner un polynôme Q, dont les coefficients dépendent de $m \in \mathcal{E}$, tel que $Q(p_m) = 0$. En déduire l'expression de p_m si m est dans \mathcal{E} .
- *ii*) En déduire que $m \in \mathbb{N}^*$ est dans \mathcal{E} si et seulement si $8m^2 + 1$ est un carré parfait. Vérifier le résultat admis au début de la question a)
- c) i) Montrer que $\mathbb{Z}[\sqrt{8}] = \{a + b\sqrt{8}, (a, b) \in \mathbb{Z}^2\}$ est un anneau et que tous ses éléments s'écrivent de manière unique.
- ii) Montrer que $U = \{a + b\sqrt{8} \in \mathbb{Z}[\sqrt{8}], a^2 8b^2 = 1\}$ est un sous groupe des éléments inversibles de $\mathbb{Z}[\sqrt{8}]$.
- d) i) Montrer qu'il existe un entier t_n tel que $(3+\sqrt{8})^n=t_n+m_n\sqrt{8}$, et montrer que $(3+\sqrt{8})^n \in U$.
 - ii) Montrer que $m \in \mathcal{E}$ si et seulement s'il existe $n \in \mathbb{Z}$ tel que $n + m\sqrt{8} \in U$.
- e) Soit $U^+ = U \cap \mathbb{R}^+$. Montrer que U^+ est un groupe, et montrer que le plus petit élément de $U^+ \cap [1, +\infty)$ est $3 + \sqrt{8}$.
- **5.** a) Soient $a, b \in \mathbb{N}^*$ et p un nombre premier Montrer que $v_p(a, b) = v_p(a) + v_p(b)$, où $v_p(a) = v_p(a) + v_p(b)$ est la valuation p-adique.
- b) i) Écrire une fonction PYTHON v(n,p) qui retourne $v_n(n)$ pour $n \in \mathbb{N}^*$ et p premier.
- ii) Écrire une fonction PYTHON somme_base(n,p) qui retourne la somme des chiffres de l'écriture de l'entier n en base p.
- iii) Écrire une fonction PYTHON nzd(n) qui retourne le nombre de 0 à droite dans l'écriture décimale de n!. La tester avec n = 500 et n = 2025.
 - *iv*) Conjecturer un lien entre n somme_base(n, 5) et nzd(n).
 - v) Pour $n \in \mathbb{N}^*$, on note $\pi(n)$ le nombre d'entiers premiers inférieurs ou égaux à n.

À l'aide de la fonction isprime de la bibliothèque sympy, tracer $\pi(2n)$ et $\frac{2\ln(2)}{\ln(2n)}$ pour

- $1 \leqslant n \leqslant 10000$. Conjecture?
- c) Soient $n \in \mathbb{N}^*$ et p premier.
 - i) Combien d'entiers inférieurs ou égaux à n sont multiples de p?
 - \vec{u}) Combien d'entiers inférieurs ou égaux à n sont multiples de p et pas de p^2 ?

$$\textit{iii)} \ \ \text{Montrer que } v_p(n) = \sum_{k=1}^{+\infty} k\left(\left\lfloor\frac{n}{p^k}\right\rfloor - \left\lfloor\frac{n}{p^{k+1}}\right\rfloor\right) \text{, puis que } v_p(n) = \sum_{k=1}^{+\infty} \left\lfloor\frac{n}{p^k}\right\rfloor.$$

- iv) Retrouver (sans PYTHON) nzd(2025).
- v) On note n en base $p: n = a_r p^r + \cdots + a_0 p^0$, et on pose $s = a_r + \cdots + a_0$. Montrer que $v_p(n) = \frac{n-s}{n-1}$.
- 6. Soit $\mathcal{E} = \left\{ n \in \mathbb{N}^* \; ; \; \forall a_1, \dots, a_{2n-1} \in \mathbb{Z}, \; \exists I \subset \llbracket 1, 2n - 1 \rrbracket, \; \operatorname{Card}(I) = n \text{ et } \sum_{i \in I} a_i \equiv 0 \; [n] \right\}.$

On note \mathcal{P}_n l'ensemble des polynômes à n variables de degré au plus n.

On admet le résultat suivant : Si $f_1, f_2, f_1 f_2 \in \mathcal{P}_n$ et si p est premier, alors l'ensemble $V = \{x \in [0, p-1]^n, f_1(x) \equiv f_2(x) \equiv 0 \ [p] \}$ vérifie $Card(V) \equiv 0 \ [n]$.

- a) Écrire en Python trois fonctions generation, trouve_I, nombre_calcul.
- **b**) Soit $p \in \mathcal{P}$. On considère $a_1, \ldots, a_{2p-1} \in \mathbb{Z}$.

On note
$$f_1: x \mapsto \sum_{i=1}^{2p-1} a_i x_i^{p-1}$$
, $f_2: x \mapsto \sum_{i=1}^{2p-1} x_i^{p-1}$. Montrer qu'il existe $\alpha \neq 0$ tel que $f_1(\alpha) \equiv f_2(\alpha) \equiv 0$ [p].

- c) Rappeler le petit théorème de Fermat. Calculer Card $\{i \in [1, 2n-1], \alpha_i \neq 0\}$. En déduire que $p \in \mathcal{E}$.
- **d)** Soit $m, n \in \mathcal{E}$. On considère $a_1, \ldots, a_{2mn-1} \in \mathbb{Z}$. Construire I_1,\ldots,I_{2m-1} des parties disjointes de $[\![1,2mn-1]\!]$ telles que, pour tout $\ell\in$ $\llbracket 1, 2m-1 \rrbracket$, $\operatorname{Card}(I_{\ell}) = n$ et $\sum_{i \in I_{\ell}} a_i \equiv 0$ [n]. Ind. Effectuer une récurrence sur ℓ .
- e) En déduire que $mn \in \mathcal{E}$. Conclure sur \mathcal{E} .
- 7. On définir une suite de polynômes en posant $T_0=1,\,T_1=X$ et $T_{n+2}=2XT_{n+1}-T_n$ pour tout $n \in \mathbb{N}$. On admet que T_n est de degré n.
- a) i) écrire une fonction poly(n) qui renvoie le polynôme T_n , en utilisant la librairie numpy.polynomial.
- **ii)** Afficher les fonctions polynomiales T_1, T_2, T_3, T_4 et T_5 sur [-1, 1] et compter leurs
- iii) Vérifier que les polynômes de la suite (T_n) commutent entre eux pour la loi de composition. En est-il de même pour tous les polynômes?
- **b)** Montrer que, pour tout $n \in \mathbb{N}$, $T_n(\cos(\theta)) = \cos(n\theta)$.
- c) Soient $n, m \in \mathbb{N}$ tels que $m \leq n$.

- Montrer que $2T_nT_m=T_{n+m}+T_{n-m}$ et $T_n\circ T_m=T_{nm}$. d) Montrer que T_n vérifie l'équation différentielle $(1-x^2)y''-xy'+n^2y=0$.
- **8.** a) Soient $P \in \mathbb{Z}[X]$ et $k \in \mathbb{N}$. Montrer qu'il existe un unique $Q \in \mathbb{Z}[X]$ tel que $P(X + \mathbb{Z}[X])$ 10^k) – $P(X) = 10^k Q(X)$. Que dire de Q si P est à coefficients dans \mathbb{N} ?
- b) Lorsque P n'est pas constant, déterminer degré et coefficient dominant de Q en fonction de ceux de P.
- c) Pour $n \in \mathbb{N}$, on note s(n) la somme des chiffres dans l'écriture décimale de n.
 - i) Écrire une fonction Python prenant n en entrée et renvoyant s(n).
 - ii) Justifier la terminaison et la correction de l'algorithme utilisé.
- iii) En examinant des exemples, conjecturer si la suite $(s(P(n)))_{n\in\mathbb{N}}$ peut être bornée. On suppose dans la suite que P est à coefficients dans \mathbb{N} .
- d) On note k le nombre de chiffres dans l'écriture décimale de P(n).

Montrer que $s(P(n+10^k)) > s(P(n))$.

- e) Démontrer la conjecture formulée en c) iii).
- f) La suite $(s(P(n)))_{n\in\mathbb{N}}$ admet-elle une sous-suite bornée?
- g) Existe-t-il $P \in \mathbb{Z}[X]$ non constant tel que la suite $(s(|P(n)|))_{n \in \mathbb{N}}$ soit bornée?

9. On dit que $x\in\mathbb{R}^+$ est μ -approchable (avec $\mu\in\mathbb{R}$) s'il existe une constante c>0, et une infinité de rationnels $\frac{p}{q}\in\mathbb{Q}^+$ tels que $\left|x-\frac{p}{q}\right|\leqslant\frac{c}{q^\mu}$. On note $\mu(x)$ la borne supérieure de l'ensemble des réels vérifiant l'assertion ci-dessus pour ce x, quitte à ce que ce soit $+\infty$. Un nombre réel positif x est dit algébrique d'ordre n s'il existe un polynôme $P\in\mathbb{Z}[X]$ de degré n tel que P(x)=0 et que pour tout polynôme $Q\in\mathbb{Z}[X]$ de degré inférieur strictement à $n,Q(x)\neq 0$. Un nombre transcendant est un nombre qui n'est pas algébrique.

On cherche à montrer le théorème suivant : Si x est algébrique d'ordre n alors $\mu(x) \leq n$.

- a) i) Écrire une fonction Python fibonacci qui a un entier n associe F_n la n-ième valeur de la suite de Fibonacci définie par $F_0=F_1=1$ et, pour tout $n\in\mathbb{N}$, $F_{n+2}=F_{n+1}+F_n$. Que vaut F_{200} ?
- - $\textit{iii}) \ \ \text{V\'erifier que}: \forall 1\leqslant n\leqslant 12, \left|\varphi-\frac{F_{2n}}{F_{2n-1}}\right|\leqslant \frac{1}{\sqrt{5}\,F_{2n-1}^2}.$
- *iv*) Écrire une fonction meilleure_approximation qui à x, n associe (p, q), où $\frac{p}{q}$ est la meilleure approximation de x par un rationnel dont q possède n chiffres exactement.
- **b**) Soit $x \in \mathbb{R}$. Montrer que, pour tout entier q, il existe $p \in \mathbb{N}$ tel que : $|qx p| \le 1$. En déduire que $\mu(x) \ge 1$.
- c) Soient $\frac{a}{b}$ et $\frac{p}{q}$ des rationnels distincts.
 - *i*) Montrer que $\left| \frac{a}{b} \frac{p}{q} \right| \geqslant \frac{1}{bq}$.
 - *ii*) En déduire que $\mu(x) = 1$ pour tout rationnel x.
- d) Montrer que l'ensemble des nombres algébriques est au plus dénombrable. Déduire qu'il existe au moins un nombre transcendant. *Ind.* On rappelle que, si ϕ est une surjection de A (dénombrable) dans B, alors B est au plus dénombrable.
- e) Soient x un nombre algébrique d'ordre n, P un polynôme de $\mathbb{Z}_n[X]$ tel que P(x) = 0,

$$M = \sup_{x \in \{0, \dots, n\}} \left| \frac{a_0}{a_n} \right|.$$

- i) Montrer que P ne possède pas de racine de module supérieur à 1+M.
- ii) Montrer le théorème.
- f) Montrer que le nombre $N = \sum_{k=0}^{+\infty} 10^{-n!}$ est transcendant.
- **10.** On dit que a est algébrique s'il existe $P \in \mathbb{Q}[X] \setminus \{0\}$ tel que P(a) = 0. On pose $I(a) = \{p \in \mathbb{Q}[X], P(a) = 0\}$.
- a) Démontrer que I(a) est un idéal de $\mathbb{Q}(X)$. Démontrer qu'il existe $\pi_a \in \mathbb{Q}[X]$ appelé polynôme minimal de a tel que $I(a) = \pi_A \mathbb{Q}[X]$.
- **b)** On note S l'ensemble des nombres algébriques a tels que π_a appartient à $\mathbb{Z}[X]$, |a| > 1 et toute racine de π_a différente de a a un module < 1. On note E l'ensemble des polynômes minimaux des éléments de S.

- i) Démontrer que $\mathbb{Q} \cap S = \mathbb{Z} \setminus \{-1, 0, 1\}$ et que $\varphi = \frac{1 + \sqrt{5}}{2} \in S$.
- *ii*) Démontrer que $S \subset \mathbb{R}$.
- c) On pose $P_1 = X^3 X 1$, $P_2 = X^3 + X + 1$, $P_3 = X^4 X^3 1$.

Or suppose que P_1 , P_2 et P_3 sont les polynômes minimaux de leurs racines.

- i) Écrire un programme évaluant si ces polynôme appartiennent à E.
- \vec{u}) Pour les polynômes P_1, P_2 et P_3 appartenant à E, évaluer à la précision 10^{-13} la valeur de $a \in S$ correspondante.
- **d)** Évaluer les 70 premiers termes des suites : $(a^n \lfloor a^n \rfloor)_{n \in \mathbb{N}}$ et $\left(\sum_{k=0}^n \sin^2(a^k\pi)\right)$.

Oue pouvez-vous conjecturer?

- e) Démontrer que π_a est irréductible dans $\mathbb{Q}[X]$. En déduire que les racines de π_a sont simples.
- f) Montrer que la matrice compagnon associée à π_a est diagonalisable.
- 11. Soient $n \in \mathbb{N}^*$ et $F = \sum_{k=0}^{n-1} a_k X^k \in \mathbb{C}_{n-1}[X]$. On désigne par Φ l'application qui à

 $P \in \mathbb{C}_{n-1}[X]$ associe la reste de la division euclidienne de PF par $X^n - 1$.

- a) Montrer que Φ est un endomorphisme de $\mathbb{C}_{n-1}[X]$.
- b) i) Pour n=4, écrire en Python une fonction d'argument F qui renvoie la matrice canonique de Φ . La tester pour $F = 1 + X + X^2 + X^3$.
- ii) Tester avec d'autres polynômes de degré 3 et renvoyer les vecteurs propres associés. Conjecture?
- c) Écrire la matrice de Φ dans la base canonique. L'endomorphisme Φ est-il diagonalisable?
- **12.** Soit $n \in \mathbb{N}^*$. Pour $A \in \mathcal{M}_n(\mathbb{C})$, on note $\lambda_1, \ldots, \lambda_p$ les valeurs propres complexes distinctes de A et m_1, \ldots, m_p leurs multiplicités respectives.

- On pose alors $Q_A(X) = (X \lambda_1) \dots (X \lambda_p)$. a) On considère $A = \begin{pmatrix} 3 & 2 & 0 \\ -1 & 4 & 1 \\ 1 & 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 4 & 2 & 0 \\ -1 & 7 & 1 \\ -1 & 1 & 5 \end{pmatrix}$.
- i) Écrire une fonction PYTHON prenant en argument un polynôme P et retournant le PGCD de P et P'.
 - *ii*) On pose $A_0 = A$ et $A_{n+1} = A_n Q_A(A_n)Q_A(A_n)^{-1}$.

Calculer avec PYTHON les matrices A_n pour $n \in [0, 20]$ en admettant provisoirement le résultat de la question c). Que constate-t-on?

- iii) Recommencer en utilisant la matrice B au lieu de la matrice A. On revient au cas général.
- **b)** Montrer que Q'_A et χ_A sont premiers entre eux.
- c) Montrer que $\chi_A = Q_A PGCD(\chi_A, \chi'_A)$.
- d) Soient R un anneau, $n \in R$ un élément nilpotent et $j \in R$ un élément inversible tels que nj = jn. Montrer que n + j est inversible.

- e) Pour $n \in \mathbb{N}$, soit (P_n) : « A_n existe, est un polynôme en A et vérifie $Q_A'(A_n)$ inversible et $Q_A(A_n) \in Q_A(A)^{2^n}\mathbb{C}[A]$ ». Montrer que la propriété (P_n) est vérifiée pour tout $n \in \mathbb{N}$. En déduire que la suite (A_n) est bien définie.
- f) Montrer que la suite (A_n) converge vers une matrice D diagonalisable et que N=A-D est nilpotente. Justifier que N et D sont polynômes en A.
- **13.** Soient $A \in \mathcal{M}_n(\mathbb{R})$, $(a_0, \dots, a_m) \in \mathbb{R}^{m+1}$, $B_0 = a_0 I_n$ et, pour tout $i \in \{1, \dots, m\}$: $B_i = a_i I_n + B_{i-1} A$. Soit $P = \sum_{i=0}^m a_i X^{m-i}$.
- a) i) Écrire une fonction prenant en argument $A, (a_0, \ldots, a_m)$ et i, et qui renvoie B_i .
- ii) Soit $A=\begin{pmatrix}1&2\\3&4\end{pmatrix}$, m=3 et $(a_0,a_1,a_2,a_3)=(1,2,3,4)$. Vérifier numériquement que $P(A)=B_m$.
- iii) Montrer en général que $B_m = P(A)$. Quelle méthode a-t-on utilisé pour calculer P(A) en fonction des B_i ?
- **b)** On pose $a_0 = 1$, $a_i = -\frac{1}{i}\operatorname{tr}(B_{i-1}A)$. Écrire une fonction calculant (a_0, \dots, a_m) . Avec la matrice de l'exemple précédent et la fonction np.poly, comparer les coefficients de χ_A et (a_0, \dots, a_m) .
- d) i) Montrer que, pour tout réel x, $P(x)I_n P(A) = (xI_n A)\sum_{i=0}^{m-1} x^{m-i}B_i$.
- ii) On suppose que $\forall x \in \mathbb{R}$, $P(x)I_n B_m = (xI_n A)\sum_{i=0}^{m-1} x^{m-i-1}B_i$. Montrer qu'il s'agit de la suite définie ici.
- e) i) On pose $C(x) = \operatorname{Com}(xI_n A)^T$. Montrer qu'il existe $C_0, \dots, C_{m-1} \in \mathcal{M}_n(\mathbb{R})$ telles que $C(x) = \sum_{i=0}^{m-1} x^{m-i-1} C_i$.
 - $\ddot{\it u}$) En considérant $\chi_A(x)I_n$, montrer le théorème de Cayley-Hamilton.
- **14.** a) On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{C})$ est (*) s'il existe un entier $i \in \{2, \dots, n\}$ tel que $A^i = A$. On se place dans $\mathcal{M}_n(\mathbb{R})$.
- i) Coder une fonction genere.matrice(n, a) qui renvoie une matrice de $\mathcal{M}_n(\mathbb{R})$ avec ses coefficients pris aléatoirement dans [-a,a].
- ii) Coder une fonction test.etoile(A) qui renvoie True si la matrice A est (*) et appartient à $GL_n(\mathbb{R})$, et False sinon.
- *iii*) Coder une fonction genere.etoile(n , a) qui renvoie une matrice (*) de $\mathcal{M}_n(\mathbb{R})$ avec ses coefficients pris aléatoirement dans [-a,a].
- *iv*) Coder une fonction qui calcule la proportion de matrices (*) dans les matrices à coefficients dans [-a, a] pour des matrices de $\mathcal{M}_i(\mathbb{R})$ pour i variant dans $\{2, \ldots, n\}$.
 - v) Tracer sur un même graphique ces proportions pour a variant dans [2,6].

- **b**) Soient E un \mathbb{C} -espace vectoriel de dimension finie n et $u \in \mathcal{L}(E)$ un endomorphisme. Soit $\ell \geqslant 2$ un entier.
 - i) Montrer que si u est diagonalisable, alors u^{ℓ} est diagonalisable.
- ii) Donner un exemple de $u \in \mathcal{L}(E)$ tel que, pour un certain entier $\ell \geqslant 2, u^{\ell}$ soit diagonalisable mais que u ne le soit pas.
- c) On suppose dans cette partie que u^{ℓ} est diagonalisable.
- i) Montrer qu'il existe des scalaires distincts $\alpha_1, \ldots, \alpha_p \in \mathbb{C}$ tels que : $(u^{\ell} \alpha_1 \operatorname{id}_E) \circ \cdots \circ (u^{\ell} \alpha_p \operatorname{id}_E) = 0.$
- ii) Si les valeurs propres α_i de u^{ℓ} sont toutes non nulles, montrer que u est diagonalisable. On suppose toujours que u^{ℓ} est diagonalisable.
 - iii) Montrer que $\ker (u^{\ell})$ est un sous-espace stable par u.
 - *iv*) Montrer que si u est diagonalisable, alors $\ker (u^{\ell}) = \ker(u)$.
 - v) Montrer que si $\ker (u^{\ell}) = \ker(u)$ alors u est diagonalisable.
 - vi) En déduire une condition nécessaire et suffisante sur u pour qu'il soit diagonalisable.
- **15.** On pose $H_0 = I_n$ et, pour $u \in \mathbb{R}^n \setminus \{0\}$, $H_u = I_n 2\frac{uu^T}{u^Tu}$.
- a) Montrer que, si $u \neq 0$, H_u est la matrice de la réflexion par rapport à l'hyperplan $\operatorname{Vect}(u)^{\perp}$.
- **b**) Montrer que toute réflexion est de la forme H_u pour un certain u.
- c) Programmer la fonction $u \mapsto H_u$.
- d) Si $v \in \mathbb{R}^n \setminus \mathbf{V}ect(e_1)$ et $u = v \|v\|e_1$, montrer que $H_uv = \|v\|e_1$. Ind. Montrer que $H_ux = x 2\frac{\langle u, x \rangle}{\|u\|^2}u$.
- e) Montrer que, pour tout $A \in \mathcal{M}_n(\mathbb{R})$, il existe $\alpha \in \mathbb{R}$ et $B \in \mathcal{M}_{n-1}(\mathbb{R})$ tels que $H_uA = \begin{pmatrix} \alpha & * \\ 0 & B \end{pmatrix}$.
- f) Montrer que pour tout $M \in \mathcal{M}_n(\mathbb{R})$, il existe des matrices $Q \in \mathcal{O}_n(\mathbb{R})$ et R triangulaire supérieure telles que M = QR.
- g) Montrer que, pour tout $M=(m_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R}), |\det(M)|^2\leqslant \prod_{j=1}^n\sum_{i=1}^n m_{i,j}^2.$
- **16.** Soit $n \geq 2$. On note $S = S_n(\mathbb{R})$ et S_0 l'ensemble des matrices de S dont la diagonale est nulle. Une matrice $A \in S_0$ est dite euclidienne s'il existe $p \in \mathbb{N}^*$ et $X_1, \ldots, X_n \in \mathbb{R}^p$ tels que $a_{i,j} = \|X_i X_j\|^2$ pour tous $1 \leq i,j \leq n$. On dit alors que A est associée à X_1, \ldots, X_n . On note $I = I_n$ et $U = (1,\ldots,1)^T \in \mathcal{M}_{n,1}(\mathbb{R})$. On pose $M = I \frac{1}{n}UU^T$. On pose enfin $f: A \in S \mapsto -\frac{1}{2}MAM$.
- a) Soit $A \in \mathcal{S}$ telle que $\operatorname{Sp}(f(A)) \subset \mathbb{R}^+$. Montrer qu'il existe $k \in [0, n]$, $P \in \mathcal{O}_n(\mathbb{R})$ et $\Delta = \operatorname{Diag}(\lambda_1, \dots, \lambda_k, 0, \dots, 0)$ avec $\lambda_i > 0$ pour $1 \le i \le k$ tels que $f(A) = P\Delta^2 P^T$.
- b) i) Écrire une fonction PYTHON prenant en argument une matrice $X \in \mathcal{M}_{p,n}(\mathbb{R})$ et renvoyant la matrice euclidienne associée aux colonnes de X.
 - \vec{u}) Écrire une fonction PYTHON qui, à une matrice $A \in \mathcal{S}$, associe f(A).

- iii) En testant sur des matrices euclidiennes aléatoires avec n=5 et $p\in\{2,3,4,5\}$ (on prendra des vecteurs aléatoires à coordonnées entières dans la fonction b) i), calculer les valeurs propres de f(A). Que remarque-t-on?
- *iv*) Écrire une fonction PYTHON qui prend en argument $A \in \mathcal{S}$ telle que $\operatorname{Sp}(f(A)) \subset \mathbb{R}^+$, calcule P et Δ comme décrites en question a), puis renvoie la matrice X constituée des k premières lignes de ΔP^T .
- Ind. Si L=[t1,...,tm] est une liste d'entiers et A est une matrice, l'instruction A[:,L] renvoie une matrice dont les lignes sont, dans l'ordre, les lignes $t_1,...,t_m$ de A.
- v) Sur des matrices euclidiennes aléatoires, calculer la matrice X de la question précédente, puis la matrice euclidienne associée aux colonnes de X. Que remarque-t-on?

c) Soit
$$A = (a_{i,j}) \in \mathcal{S}$$
. On pose $\overline{a_i} = \frac{1}{n} \sum_{j=1}^n a_{i,j}$ pour $1 \leqslant i \leqslant n$, puis $\overline{a} = \frac{1}{n} \sum_{i=1}^n \overline{a_i}$.

- i) Montrer que la coefficients d'indices (i,j) de f(A) est $\frac{1}{2}(\overline{a_i} + \overline{a_j} a_{i,j} \overline{a})$.
- ii) En déduire que f est injective sur S_0 .
- iii) Calculer f(A)U.
- d) Soit A euclidienne. Justifier l'existence d'un entier $p \in \mathbb{N}^*$ minimal, appelé type de A, tel qu'il existe $Y_1, \ldots, Y_n \in \mathbb{R}^p$ tels que $Y_1 + \cdots + Y_n = 0$ et que A soit associée à Y_1, \ldots, Y_n .

17. On fixe un entier
$$n\geqslant 1$$
 et on pose $f:A\in\mathcal{O}_n(\mathbb{R})\mapsto\sum_{1\leqslant i,j\leqslant n}|a_{i,j}|.$

- a) Montrer que f est bornée et atteint ses bornes.
- **b**) Déterminer le maximum et le minimum de f lorsque n=2.
- c) i) Écrire une fonction aleatoireR3 qui renvoie un vecteur aléatoire unitaire de \mathbb{R}^3 .
- \ddot{u}) Écrire une fonction orthogonal qui prend en entrée un vecteur unitaire de \mathbb{R}^3 et renvoie un vecteur unitaire orthogonal à celui-ci.
- iii) En utilisant le produit vectoriel, écrire une fonction aleatoire03 qui renvoie une matrice aléatoire de $\mathcal{O}_3(\mathbb{R})$.
- *iv*) Utiliser les fonctions précédentes pour conjecturer les valeurs des bornes de f lorsque n=3.
- **d)** Montrer que f est majorée par $n\sqrt{n}$.
- e) Montrer que $\max f = n\sqrt{n}$ si et seulement si $B_n = \{A \in \mathcal{M}_n(\{-1,1\}), A^TA = nI_n\}$ est non vide.
- **18.** Une matrice $A \in \mathcal{M}_n(\mathbb{R})$ est bistochastique si ses coefficients sont positifs et vérifient $\sum_{j=1}^n a_{i,j} = \sum_{i=1}^n a_{i,j} = 1$ pour tous $1 \leqslant i,j \leqslant n$.
- a) i) Écrire une fonction PYTHON Test(A) qui vérifie si la matrice A est bistochastique.
- \ddot{u}) Écrire une fonction PYTHON Indice qui prend en argument une matrice $A \in \mathcal{M}_n(\mathbb{R})$ et renvoie, s'il existe, un triplet (k, ℓ, m) d'entiers tels que k est le plus petit entier tel que $a_{k,k} \neq 1$, et $\ell, m > k$ tels que $a_{\ell,k} \neq 0$ et $a_{k,m} \neq 0$.
- iii) écrire une fonction PYTHON f prenant en argument une matrice $A \in \mathcal{M}_n(\mathbb{R})$ et retournant $A + \min(a_{\ell,k}, a_{k,m})(E_{k,k} E_{\ell,k} E_{k,m} + E_{\ell,m})$ où $(k,\ell,m) = \operatorname{Indice}(A)$ s'il existe.

- *iv*) Écrire une fonction PYTHON N qui prend en argument une matrice $A \in \mathcal{M}_n(\mathbb{R})$ et deux n-uplets réels α et β , et renvoie $\sum_{i=1}^n a_{i,j}\alpha_i\beta_j$.
- v) Écrire une fonction PYTHON Suite prenant en argument $A \in \mathcal{M}_n(\mathbb{R})$, $\alpha, \beta \in \mathbb{R}^n$ et $p \in \mathbb{N}^*$ et qui retourne les listes $[A, f(A), \dots, f^p(A)]$ et $[N(A, \alpha, \beta), \dots, N(f^p(A), \alpha, \beta)]$. Qu'observe-t-on dans le cas où A est bistochastique différente de l'identité et α, β strictement décroissants?
- b) Montrer que Indice(A) existe si A est bistochastique différente de l'identité.
- c) Montrer que N(A) < N(f(A)) si α et β sont strictement décroissants.
- d) On suppose $\alpha, \beta \in \mathbb{R}^n$ strictement décroissants. Montrer que N admet un maximum sur l'ensemble des matrices bistochastiques de taille n, atteint en l'identité.
- e) Montrer que le résultat précédent reste valable si on suppose seulement α et β décroissants
- f) Soient $A, B \in \mathcal{M}_n(\mathbb{R})$. On admet qu'il existe des matrices $P_1, Q_1, P_2, Q_2 \in \mathcal{O}_n(\mathbb{R})$ et $D_1 = \operatorname{Diag}(\alpha_1, \dots, \alpha_n), D_2 = \operatorname{Diag}(\beta_1, \dots, \beta_n)$ avec $\alpha_1 \geqslant \dots \geqslant \alpha_n \geqslant 0$ et $\beta_1 \geqslant \dots \geqslant \beta_n \geqslant 0$ telles que $A = P_1 D_1 Q_1^T$ et $B = P_2 D_2 Q_2^T$.
 - i) Montrer l'existence de $P,Q \in \mathcal{O}_n(\mathbb{R})$ telles que $\operatorname{tr}(AB) = \sum_{1 \leqslant i,j \leqslant n} p_{i,j} \alpha_i q_{j,i} \beta_j$.
- \vec{u}) Montrer que, si $R=(r_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{O}_n(\mathbb{R})$, la matrice $(r_{i,j}^2)_{1\leqslant i,j\leqslant n}$ est bistochastique.
 - $\textit{iv}) \ \ \text{En d\'eduire que } |\text{tr}(AB)| \leqslant \sum_{i=1}^n \alpha_i \beta_i.$
 - v) On suppose A et B symétriques positives. Montrer que $|tr(AB)| \le tr(A)tr(B)$.
- **19.** On considère la fonction $\mu:(O,S)\in\mathcal{O}_n(\mathbb{R})\times\mathcal{S}_n^{++}(\mathbb{R})\mapsto OS\in\mathrm{GL}_n(\mathbb{R}).$
- a) Montrer que la fonction μ est bien définie.
- b) i) Écrire une fonction PYTHON generer_diagonale_positive(n) qui retourne une matrice diagonale de taille n dont les coefficients diagonaux sont tirés aléatoirement dans l'intervalle]0,10[.
- \ddot{u}) Écrire une fonction PYTHON generer_Snplusplus(n) qui retourne une matrice symétrique définie positive de taille n aléatoire à valeurs propres dans]0,10[.
- On pourra utiliser la fonction $ortho_group$ importée du module scipy.stats: la commande $ortho_group.rvs(dim=n)$ génère aléatoirement une matrice orthogonale de taille n.
- iii) Écrire une fonction PYTHON test_Snplusplus (A) qui vérifie si une matrice réelle A appartient à $\mathcal{S}_n^{++}(\mathbb{R})$ en considérant que deux coefficients numériques sont égaux si leur différence est inférieure à 10^{-5} .
- *iv*) Pour n=3, générer aléatoirement 10000 couples (O,S), calculer le déterminant des matrices OS obtenues et représenter graphiquement la liste croissante des valeurs obtenues.
- c) Montrer que la fonction μ est continue.
- d) i) Montrer que, pour toute matrice $M \in \mathrm{GL}_n(\mathbb{R})$, il existe $S \in \mathcal{S}_n^{++}(\mathbb{R})$ telle que $M^TM = S^2$.
 - ii) En déduire que μ est surjective.
- e) On admet que deux matrices diagonalisables qui commutent sont simultanément diagonalisables. Soient deux couples (O, S) et (O', S') tels que $\mu(O, S) = \mu(O', S')$.

- *i*) Montrer que $S^2 = S'^2$.
- ii) Montrer que S est un polynôme en S'.
- iii) En déduire que μ est injective.
- f) i) Montrer que le groupe orthogonal $\mathcal{O}_n(\mathbb{R})$ est un compact de $\mathcal{M}_n(\mathbb{R})$.
 - *ii*) Déterminer l'adhérence de $\mathcal{S}_n^{++}(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$.
- iii) Montrer que, si la suite $(M_p)_{p\geqslant 1}^n$ de matrices de $\operatorname{GL}_n(\mathbb{R})$ converge vers $M\in\operatorname{GL}_n(\mathbb{R})$, alors $\mu^{-1}(M_p)\underset{p\to +\infty}{\longrightarrow} \mu^{-1}(M)$.
- **20.** On considère que deux matrices sont égales si leurs coefficients diffèrent de moins de $\varepsilon = 10^{-12}$.
- a) i) écrire une fonction PYTHON test_orthogonal(A) qui vérifie si la matrice A est orthogonale. La tester pour $M = \frac{1}{9} \begin{pmatrix} 7 & -4 & 4 \\ 4 & 8 & 1 \\ 4 & -1 & -8 \end{pmatrix}$.

Un endomorphisme d'un espace euclidien est normal s'il commute avec son adjoint.

- *ii*) Écrire une fonction PYTHON test_normal(A) qui vérifie si une matrice A est normale. Vérifier que M est normale.
- iii) Écrire une fonction PYTHON genere_ mat_normale(n) qui génère aléatoirement une matrice normale de $\mathcal{M}_n(\mathbb{R})$ à coefficients dans [-9,9], qui ne soit ni symétrique ni antisymétrique. Afficher le nombre de tours de boucle.
- **b**) Soient E un espace euclidien et $u \in \mathcal{L}(E)$.
- i) Montrer que, si un sous-espace vectoriel F de E est stable par u, son orthogonal est stable par u^* .
- \ddot{u}) On suppose que u est normal. Montrer que, pour $\lambda \in \operatorname{Sp}(u)$, l'orthogonal de l'espace propre $E_{\lambda}(u)$ est stable par u.

On veut montrer que si u est normal, il existe une base B orthogonale dans laquelle u a une matrice diagonale par blocs de taille 1 ou 2, les blocs de taille 2 étant de la forme $\begin{pmatrix} a & b \\ -b & a \end{pmatrix}$ avec $b \neq 0$.

On procède par récurrence sur la dimension de l'espace E, et on remarque que c'est vrai en dimension 1.

Supposons le résultat acquis jusqu'en dimension n et soit u un endomorphisme normal d'un espace euclidien E de dimension n+1.

- c) Supposons que u a une valeur propre réelle. Conclure en utilisant l'hypothèse de récurrence sur un endomorphisme d'un espace de dimension strictement inférieure.
- \emph{d}) On suppose maintenant que u n'a aucune valeur propre réelle.
 - i) Soit Q un facteur irréductible de π_u . Quel est le degré de Q ?
 - ii) Montrer que $ker Q(u) \neq \{0\}$.
 - iii) Soit $M \in \mathcal{M}_2(\mathbb{R})$ une matrice normale sans valeur propre réelle.

Montrer l'existence de $a,b \in \mathbb{R}$ avec $b \neq 0$ tels que $M = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$.

- *iv*) Montrer que ker Q(u) est stable par u et u^* .
- v) Conclure.

Analyse

- **21.** Soit $h: \mathbb{R} \to \mathbb{R}$ dérivable. Le but de cet exercice est de montrer que l'ensemble des points où h' est continue est dense. On admet le théorème suivant :
- Si $(F_n)_{n\geqslant 0}$ est une famille de fermés d'intérieurs vides de $\mathbb R$ alors $\bigcup F_n$ est d'intérieur

vide. Si $(\Omega_n)_{n\geqslant 0}$ est une famille d'ouverts denses de \mathbb{R} alors $\bigcap \Omega_n$ est dense.

- a) On pose $g(x) = x^2 \sin(1/x)$ pour $x \in \mathbb{R}^*$ et g(0) = 0. Tracer le graphe de g entre -0.3et 0.3. Montrer que g est dérivable sur \mathbb{R} mais que g n'est pas de classe \mathcal{C}^1 sur \mathbb{R} .
- **b)** On pose $m: x \mapsto \sum_{k=1}^{+\infty} \frac{1}{k^2} \sin(k^2 x)$. Tracer le graphe de m entre -2 et 2 puis entre -5 et 5. Oue remarque-t-on?
- c) Soient A et B deux parties de \mathbb{R} . Montrer que $A \cap B = \mathring{A} \cap \mathring{B}$ et que $\overline{\mathbb{R} \setminus A} = \mathbb{R} \setminus \mathring{A}$.
- d) Montrer que si F est un fermé d'intérieur vide alors $\mathbb{R} \setminus F$ est un ouvert dense. Soit f une fonction continue de \mathbb{R} dans \mathbb{R} qui est la limite simple de $(f_n)_{n\geq 0}$, une suite de fonctions continues.

Pour dans $n \in \mathbb{N}$ et a > 0, on pose $F_{n,a} = \{x \in \mathbb{R} : \forall p \geqslant n, |f_n(x) - f_p(x)| \leqslant a\}$ et $\Omega_a = \bigcup_{n\geqslant 0} F_{n,a}$. Soit $\varepsilon > 0$.

- e) Montrer que $F_{n,\varepsilon}$ est fermé.
- f) Calculer $\bigcup_{n\geqslant 0} F_{n,\varepsilon}$.
- **g**) Si $x_0 \in \Omega_{\varepsilon}$, montrer que $\exists \eta > 0, \forall x \in \mathbb{R}, |x x_0| \leq \eta \Rightarrow |f(x) f(x_0)| \leq 3\varepsilon$. On pose $G = \mathbb{R} \setminus \Omega_{\varepsilon}$.
- **h**) Calculer l'intérieur de $G \cap F_{n,\varepsilon}$.
- *i*) En déduire que Ω_{ε} est un ouvert dense.
- j) Montrer que f est continue en tout point de $U = \bigcap_{n>0} \Omega_{1/n}$.
- **k)** En déduire le résultat pour h.
- 1) Montrer l'équivalence entre les deux assertions du théorème.
- **22.** Soit $n \ge 2$. On pose $K_n = \{(x_1, \dots, x_n) \in]-1, 1[^n, x_1 < \dots < x_n\}$. Soit $f_n: (x_1, \dots, x_n) \in K_n \mapsto -\sum_{i=1}^n \ln(1 - x_i^2) - 4\sum_{1 \le i < j \le n} \ln(x_j - x_i).$
- a) Écrire une fonction f prenant en argument une liste $[x_1,\ldots,x_n]$ et calculant $f_n(x_1,\ldots,x_n)$. b) On pose $r_n=\left(\cos\left(\frac{2n-i-1}{2n}\pi\right)\right)_{1\leqslant i\leqslant n}$.
 - *i*) Montrer que $r_n \in K_n$.
 - \vec{u}) Donner une approximation de $f_3(r_3)$, $f_4(r_4)$, $f_5(r_5)$ à l'aide de PYTHON.
 - iii) Conjecturer un équivalent de $f_n(r_n)$.
- c) L'ensemble K_n est-il ouvert? fermé? convexe?
- d) La fonction f_n est-elle bornée sur K_n ?
- e) Montrer que la fonction f_n est convexe.

- f) Soient U un ouvert convexe et $\varphi:U\to\mathbb{R}$ une fonction convexe de classe \mathcal{C}^2 sur U. Montrer que, si φ atteint en $x_0 \in U$ un minimum local, alors ce minimum est global.
- **23.** Pour $f \in \mathcal{L}(\mathbb{R}^2)$, on note $||f||_{\text{op}} = \sup_{x \in \mathbb{R}^2 \setminus \{(0,0)\}} \frac{||f(x)||_2}{||x||_2}$ où $||\cdot||_2$ est la norme euclidienne

canonique sur \mathbb{R}^2 . On note Σ la boule unité de $\mathcal{L}(\mathbb{R}^2)$ muni de la norme $\| \cdot \|_{\text{op}}$, R (resp. S) l'ensemble des rotations (resp. réflexions) de \mathbb{R}^2 .

- a) Montrer que $R \cup S \subset \Sigma$. Pour $u, v \in \mathcal{L}(\mathbb{R}^2)$, on note $[u, v] = \{(1 t)u + tv, t \in [0, 1]\}$ et $]u,v[= \{(1-t)u + tv, t \in]0,1[\}.$
- b) i) On représente un endomorphisme de \mathbb{R}^2 par sa matrice en base canonique.

En utilisant le module numpy random, écrire une fonction PYTHON norme qui prend en argument une matrice $A \in \mathcal{M}_2(\mathbb{R})$, et retourne la norme-opérateur de l'endomorphisme canoniquement associé.

- ii) En testant sur des exemples, vérifier avec PYTHON que, pour $r \in R$ et $s \in S$, on a $[r,s]\subset\Sigma.$
- c) Soient $r \in R$ et $s \in S$. Montrer que $[r, s] \subset \Sigma$ et que $[r, s] \cap \mathcal{O}_2(\mathbb{R}) = \emptyset$. Ind. On pourra se ramener à r = id.
- d) On admet que, pour toute $M \in \mathcal{M}_2(\mathbb{R})$, il existe $U, V \in \mathcal{O}_2(\mathbb{R})$ et D matrice diagonale positive telles que M = UDV. Montrer que $\forall f \in \Sigma, \exists (r, s) \in R \times S, f \in [r, s]$.
- **24.** On note \mathbb{D}^{\times} l'ensemble des décimaux inversibles, i.e. l'ensemble des décimaux non nuls dont l'inverse est décimal. Le but de cet exercice est de montrer que \mathbb{D}^{\times} est dense dans \mathbb{R} . Le problème étant symétrique en \mathbb{R}^+ et \mathbb{R}^- , on peut se restreindre à l'ensemble \mathbb{D}_+^{\times} des décimaux inversibles positifs. On pose $E = \{2^{\alpha}5^{\beta}, (\alpha, \beta) \in \mathbb{Z}^2\}.$
- a) i) Écrire une fonction transforme sur Python prenant en argument un décimal d et renvoyant le plus petit entier $n \in \mathbb{N}$ tel que $10^n d \in \mathbb{Z}$. La tester avec 0.447.
- ii) Écrire une fonction décimal inversible sur Python prenant en argument un décimal d>0 et renvoyant True s'il est inversible et False sinon. L'utiliser pour afficher tous les décimaux entiers inversibles entre 1 et 100.
- iii) Tracer sur Python le nombre de décimaux entiers inversibles entre 1 et n pour $n \in$ $[1, 10^5]$.
- b) On admet le lemme suivant : un sous-groupe H de $(\mathbb{R},+)$ est soit monogène, soit dense dans \mathbb{R} . Montrer que $E = \mathbb{D}_{+}^{\times}$.
- c) On pose $G = \{\alpha \ln(2) + \beta \ln(5), (\alpha, \beta) \in \mathbb{Z}^2\}.$
 - *i*) Montrer que G est un sous-groupe de $(\mathbb{R}, +)$.
 - *ii*) Montrer que G est dense dans \mathbb{R} .
- d) Soit $x \in \mathbb{R}$. On note $x = \sum_{i=-\infty}^m x_i 10^i$ son écriture décimale et, pour $n \in \mathbb{N}$, on pose

$$N_n = \sum_{i=0}^{m+n} x_{i-n} 10^i.$$

On cherche une suite $(\delta_n)_{n\in\mathbb{N}}$ telle que : $\forall n\in\mathbb{N}, \ |x-\delta_n|\leqslant 10^{-n}$.

i) Montrer : $\forall n\in\mathbb{N}, \ \exists (\alpha,\beta)\in\mathbb{Z}^2, N_n10^\beta\leqslant 2^\alpha<(N_n+1)10^\beta$.

- ii) En déduire que, si on pose $\delta_n = 10^{-\beta} 10^{-n} 2^{\alpha}$, la suite $(\delta_n)_{n \in \mathbb{N}}$ vérifie bien la propriété voulue.
- **25.** Une suite $(u_n)_{n\geqslant 1}$ de réels de [0,1] est équirépartie si

$$\forall a < b \in [0,1], \ \frac{S_n(a,b)}{n} \underset{n \to \infty}{\longrightarrow} b - a \ \text{où} \ S_n(a,b) = \operatorname{Card}(\{k \in [\![1,n]\!], \ a \leqslant u_k \leqslant b\}).$$
 Pour $x \in \mathbb{R}$, on note $\{x\} = x - \lfloor x \rfloor$ la partie fractionnaire de x .

- a) Montrer que, si une suite $(u_n)_{n \ge 1}$ est équirépartie dans [0,1], alors elle y est dense. La réciproque est-elle vraie?
- b) i) Écrire une fonction PYTHON S(u,n,a,b) calculant $S_n(a,b)$ pour la suite $u \in$ $[0,1]^{\mathbb{N}^*}$.
- \ddot{u}) La tester avec $u_n = \left\{\sqrt{2n}\right\}$, $v_n = \cos(n)$ et $w_n = \{n/2\}$. Ces suites semblent-elles équiréparties?

Pour
$$n \in \mathbb{N}^*$$
, on pose : $D_n = \sup_{0 \leqslant a < b \leqslant 1} \left| \frac{S_n(a,b)}{n} - (b-a) \right|$ et $D_n^* = \sup_{0 \leqslant \alpha \leqslant 1} \left| \frac{S_n(0,\alpha)}{n} - \alpha \right|$.

- c) Écrire une fonction PYTHON D(u,n) calculant D_n pour la suite $u \in [0,1]^{\mathbb{N}^*}$
- d) Montrer que, pour tout $n \in \mathbb{N}^*$, $D_n^* \leqslant D_n \leqslant 2D_n^*$. e) Montrer qu'une suite $u \in [0,1]^{\mathbb{N}^*}$ est équirépartie si et seulement si la suite $(D_n)_{n \in \mathbb{N}^*}$ est de limite nulle.
- f) Soit $u \in [0,1]^{\mathbb{N}^*}$. On veut montrer l'équivalence entre :
- (A) u est équirépartie,
- (B) $\frac{1}{n}\sum_{k=1}^{n}f(u_{k})\underset{n\to+\infty}{\longrightarrow}\int_{0}^{1}f$ pour toute fonction $f:[0,1]\to\mathbb{C}$ continue,

(C)
$$\forall p \in \mathbb{N}^*, \ \frac{1}{n} \sum_{k=1}^n \exp(2i\pi p u_k) \underset{n \to +\infty}{\longrightarrow} 0.$$

- i) Montrer $(A) \Rightarrow (B)$.
- ii) Montrer que $(B) \Rightarrow (A)$.

Ind. Pour $a < b \in [0,1]$ et $\varepsilon > 0$, on pourra montrer l'existence de ψ_{ε} et ϕ_{ε} continues sur

$$[0,1]$$
 telles que $\psi_{\varepsilon} \leqslant \mathbf{1}_{[a,b]} \leqslant \varphi_{\varepsilon}$ et $\int_{0}^{1} (\varphi_{\varepsilon} - \psi_{\varepsilon}) \leqslant \varepsilon$.

iii) On admet que toute fonction continue et 1-périodique de $\mathbb R$ dans $\mathbb C$ est limite uniforme d'une suite de fonctions de l'espace $T = \text{Vect}(e_k, k \in \mathbb{Z})$ où $e_k : t \in \mathbb{R} \mapsto e^{2i\pi kt}$. Montrer que $(B) \Leftrightarrow (C)$.

Ind. Pour $(C) \Rightarrow (B)$, on pourra commencer par $f \in \mathcal{C}^0([0,1],\mathbb{C})$ telle que f(0) = f(1).

g) Soit $\theta > 0$. Montrer que la suite $(\{n\theta\})_{n \in \mathbb{N}^*}$ est équirépartie si et seulement si $\theta \notin \mathbb{Q}$.

Probabilités

- **26.** Soit $n \ge 2$. On considère l'ensemble S_n des permutations de [0, n-1]. On note T_n l'ensemble des transpositions de [0, n-1] et A_n l'ensemble des permutations paires.
- a) Une permutation $\sigma \in \mathcal{S}_n$ est représentée par la liste $[\sigma(0), \dots, \sigma(n-1)]$.
- i) Écrire une fonction PYTHON compose qui prend en argument deux permutations σ et τ et retourne $\sigma \circ \tau$.

- ii) Écrire une fonction PYTHON transposition_alea qui prend en argument l'entier n et retourne une transposition aléatoire de [0, n-1].
- iii) Écrire une fonction PYTHON composition_transposition qui prend en argument les entiers n et k, et retourne la composée de k transpositions tirées aléatoirement, indépendamment et uniformément dans \mathcal{T}_n .
- *iv*) Pour tout $\sigma \in \mathcal{S}_3$ et tout $k \in \{31, 32, 33, 34\}$, calculer la probabilité que composition_transposition(3,k) renvoie σ . Commenter et conjecturer un résultat. On considère une suite $(T_k)_{k \in \mathbb{N}^*}$ de variables aléatoires i.i.d. suivant la loi uniforme sur \mathcal{T}_n et, pour $k \in \mathbb{N}^*$, on note $X_k = T_k \circ T_{k-1} \circ \cdots \circ T_1$ et $X_0 = \mathrm{id}$.
- **b**) Calculer la probabilité $\mathbf{P}(X_k \in \mathcal{A}_n)$ pour $k \in \mathbb{N}$.
- c) Soit $\tau \in \mathcal{T}_n$. Pour $k \in \mathbb{N}$, calculer $\mathbf{P}(T_k = \tau)$.
- **d**) Soient $\sigma \in \mathcal{S}_n$ et $k \in \mathbb{N}$. Montrer que $\mathbf{P}(X_{k+1} = \sigma) = \frac{2}{n(n-1)} \sum_{\tau \in \mathcal{T}_n} \mathbf{P}(X_k = \tau \circ \sigma)$.
- e) Pour $k \in \mathbb{N}$, on note $U_k = (\mathbf{P}(X_k = \sigma))_{\sigma \in \mathcal{S}_n}^T \in \mathcal{M}_{n!,1}(\mathbb{R})$. Montrer l'existence d'une matrice $M \in \mathcal{M}_{n!}(\mathbb{R})$ telle que $\forall k \in \mathbb{N}, \ U_{k+1} = MU_k$. Préciser, pour $\sigma, \sigma' \in \mathcal{S}_n$, la valeur de $M_{\sigma,\sigma'}$ (les cases de M sont indexées par les éléments de \mathcal{S}_n). En déduire l'expression de U_k en fonction de M et k.
- f) Montrer que la matrice M est diagonalisable dans \mathbb{R} .
- g) Montrer que $Sp(M) \subset [-1,1]$ et préciser les espaces propres associés à 1 et -1.
- **h**) Soit $\sigma \in \mathcal{S}_n$. Calculer les limites de $\mathbf{P}(X_{2k} = \sigma)$ et $\mathbf{P}(X_{2k+1} = \sigma)$ quand $k \to +\infty$. Commenter.
- i) En utilisant la suite $(X_k)_{k\in\mathbb{N}^*}$, construire une suite $(Y_k)_{k\in\mathbb{N}^*}$ de variables aléatoires telle que $\forall \sigma \in \mathcal{S}_n, \lim_{k \to +\infty} \mathbf{P}(Y_k = \sigma) = \frac{1}{n!}$.
- **27.** Soient X,Y deux variables aléatoires à valeurs dans \mathbb{R}^{+*} telles que $X\sim Y$. On veut établir l'inégalité $(*):\mathbf{E}\left(X/Y\right)\geqslant 1$.

Soient U,V deux variables aléatoires indépendantes à valeurs dans $\mathbb R$ et de même loi. On veut établir l'inégalité (**): $\mathbf E(|U-V|) \leqslant \mathbf E(|U+V|)$.

- a) En Python tester (*) sur des lois binomiales et géométriques
- b) Faire de même pour (**) avec des lois binomiales, Poisson, ...
- c) Tracer à l'aide de python la fonction : $x \mapsto \int_{-\infty}^{+\infty} \frac{1 \cos(xt)}{t^2} dt$ sur [-3, 3]. Conjecture?
- *d*) Montrer (*) dans le cas où X et Y sont indépendantes. *Ind.* Utiliser l'inégalité de Cauchy-Schwarz.
- e) On suppose que $\ln(X)$ est d'espérance finie, montrer (*).

Ind. Commencer par montrer que : $\ln(x) \leq x - 1$.

f) Soient
$$a, b > 0$$
 Montrer que :
$$\int_0^{+\infty} \frac{e^{-ax} - e^{-bx}}{x} dx = \ln\left(\frac{b}{a}\right).$$

- **g)** Montrer (*).
- h) Vérifier la conjecture établie à la question c).
- *i*) Montrer (**).

Centrale II - Python - PSI

Algèbre

28. Si $P = \sum_{k=0}^{n} a_k X^k$ et $Q = \sum_{k=0}^{m} b_k X^k$ sont deux polynômes complexes, on appelle résul-

tant de P et Q et l'on note Res(P,Q) le déterminant de la matrice

- a) Coder Res(P,Q) pour P et Q de degré 2.
- **b)** Calculer Res(P,Q) pour

i)
$$P = (X-1)(X-2)$$
 et $Q = (X-1)(X-3)$,

ii)
$$P = (X - 1)(X - 2)$$
 et $Q = (X - 3)(X - 4)$,
iii) $P = X^2 - 2X + 1$ et $Q = X^2 - 2$.

iii)
$$P = X^2 - 2X + 1$$
 et $Q = X^2 - 2$.

c) Que peut-on conjecturer?

Soit $\varphi: (U, V) \in \mathbb{C}_{m-1}[X] \times \mathbb{C}_{m-1}[X] \mapsto PU + QV$.

- **d)** Montrer que φ est linéaire et à valeurs dans $\mathbb{C}_{n+m-1}[X]$.
- e) Montrer que φ est injective si et seulement si P et Q n'ont pas de racine complexe commune.
- f) On pose $\mathcal{B} = ((1,0), \dots, (X^{m-1},0), (0,1), \dots, (0,X^{n-1}))$ et $\mathcal{B}' = (1,\dots,X^{n+m-1})$. Montrer que S(P,Q) est la matrice de φ dans la base \mathcal{B} au départ et la base \mathcal{B}' à l'arrivée. Pour $P \in \mathbb{C}[X]$, de degré n, on pose $\mathrm{Dis}(P) = \mathrm{Res}(P, P')$.
- g) Montrer que P est à racines simples si et seulement si $Dis(P) \neq 0$.
- **h)** Soit $P = aX^2 + bX + c$ de degré 2. Montrer que P admet deux racines complexes distinctes si et seulement si $b^2 - 4ac \neq 0$.

29. Si
$$P \in \mathbb{R}[X]$$
, on pose $S(P) = \frac{1}{e} \sum_{k=0}^{+\infty} \frac{P(k)}{k!}$.

- a) i) Écrire une fonction fact permettant de calculer la factorielle des entiers.
 - \vec{u}) Calculer avec Python $\frac{1}{e} \sum_{k=0}^{50} \frac{P(k)}{k!}$ avec $P = X^d$ pour $d \in \{1, \dots, 10\}$, puis avec

 $P=X^9+36X^6-X^3+X^2\overset{\kappa=0}{-3}. \text{ À quel ensemble } S(P) \text{ semble-t-il appartenir ?}$ **b) i)** Montrer que, pour tout $P\in\mathbb{R}[X]$, la série $\sum_{k>0}\frac{P(k)}{k!}$ converge. On note S(P) la somme.

Montrer que l'application $P \mapsto S(P)$ est une forme linéaire.

- ii) Soit (H_n) la suite de polynômes définie par $H_0 = 1$ et $\forall n \in \mathbb{N}, H_{n+1} = (X n)H_n$. Montrer que $(H_k)_{0 \leq k \leq n}$ est une base de $\mathbb{R}_n[X]$.
 - *iii*) Soit $n \in \mathbb{N}$. Calculer $S(H_n)$.

- iv) Soit $P \in \mathbb{R}_n[X]$ à coefficients entiers. Montrer que les coordonnées de P dans la base $(H_k)_{0 \leqslant k \leqslant n}$ sont entières. Démontrer la conjecture de la première question.
- **30.** Soit $n \ge 2$. On pose N_n la matrice dont tous les coefficients sont nuls sauf $(N_n)_{i,i+1}$ qui vaut 1 pour tout i. On pose également R_n triangulaire supérieure avec $(R_n)_{i,i+j} = a_j$ avec $a_0 = 1$ et $a_j = \frac{(-1)^{j-1}}{j2^{2j-1}} \binom{2j-2}{j-1}$.
- a) i) Écrire un code Python permettant de calculer N_n (on utilisera np. zeros).
 - $\ddot{\it u}$) Calculer N_n^n (np.dot ou np.linalg.matrix.power). Que peut-on conjecturer?
 - iii) Prouver la conjecture.
- **b**) i) Écrire un code Python permettant de créer R_n (on utilisera la fonction binom(n,p) de la bibliothèque scipy.special).
 - ii) Conjecturer R_n^2 .
- c) Montrer qu'il existe un polynôme P_n de degré au plus n tel que $\sqrt{1+x}=P_n(x)+o(x^n)$. Déterminer ses coefficients.
- **d)** Montrer que le polynôme $P_n^2(X) 1 X$ est divisible par X^n .
- e) En déduire une matrice dont le carré vaut $I_n + R_n$.
- **31.** Soit $e=(e_1,\ldots,e_n)$ une base de \mathbb{R}^n . Si $x=x_1e_1+\cdots+x_ne_n\in\mathbb{R}^n$, on pose $N_e(x)=\max_{i\in \llbracket 1,n\rrbracket}|x_i|$. Soit $f\in\mathcal{L}(\mathbb{R}^n)$.

On pose, pour $k \in \mathbb{N}^*$ et $x \in \mathbb{R}^n$, $\alpha_k(f, e, x) = \sqrt[k]{N_e(f^k(x))}$.

- a) Si e est une base de \mathbb{R}^n , montrer que N_e est une norme.
- **b)** Dans cette question, $A = \frac{1}{12} \begin{pmatrix} 2 & 4 & 5 \\ 4 & 0 & -2 \\ 5 & -2 & 4 \end{pmatrix}$ est la matrice canoniquement associée à

f et e est la base canonique de \mathbb{R}^3 .

- i) Tracer $(k, \alpha_k(f, e, x))$ pour $1 \le k \le 50$ avec $x = e_1, x = e_1 + e_2 + e_3$, puis $x = e_1 e_3$. Faire de même pour $1 \le k \le 500$. Commenter.
- *ii*) Montrer que $v = (v_1, v_2, v_3)$ est une base de \mathbb{R}^3 où $v_1 = e_1 e_3, v_2 = e_1 + 2e_2 + e_3, v_3 = e_1 e_2$.
 - iii) Donner la matrice de f dans la base v.
 - iv) On pose $w = e_1 + \frac{1}{10}e_2 + \frac{1}{100}e_3$. Exprimer w dans la base v.
 - v) Tracer $(k, \alpha_k(f, e, w))$ et $(k, \alpha_k(f, v, w))$ sur le même graphe. Commenter.
- c) i) On considère $(u_k)_{k\geqslant 1}$ et $(v_k)_{k\geqslant 1}$ deux suites réelles qui convergent respectivement vers ℓ et m. Montrer que $(\max(u_k,v_k))_{k\geqslant 1}$ tend vers $\max(\ell,m)$. Généraliser pour d suites.
- ii) Soit $f \in \mathcal{L}(\mathbb{R}^n)$ diagonalisable. Soit e la base de ses vecteurs propres. Étudier la convergence de $(\alpha_k(f,e,x))_{k\geqslant 1}$.

32. Pour
$$a_0, \ldots, a_{n-1} \in \mathbb{C}$$
, on pose $P = \sum_{k=0}^{n-1} a_k X^k + X^n$ et $A_P = \begin{pmatrix} 0 & \ldots & 0 & -a_0 \\ 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & 0 & \vdots \\ 0 & \ldots & 1 & -a_{n-1} \end{pmatrix}$.

- *ii*) Afficher A_P pour $P = (X-1)^2(X-3), (X-1)(X-2)(X-3)$ et $X^2 3X + 2$.
- iii) Conjecturer le spectre de A_P et la dimension de ses sous-espaces propres.
- **b**) i) Calculer χ_{A_P} .

18

- \vec{u}) Soit $\lambda \in \operatorname{Sp}(A_P^T)$. Calculer $E_{\lambda}(A_P^T)$.
- iii) Donner une condition nécessaire et suffisante pour que A_P soit diagonalisable.
- c) On note $\lambda_1, \ldots, \lambda_n$ les racines de P comptées avec multiplicité et pour $k \in \mathbb{N}$ on note

$$P_k = \prod_{i=1}^n (X - \lambda_i^k).$$

- i) Écrire une fonction Python qui prend en argument k et P et qui renvoie P_k .
- ii) Quelle conjecture peut-on faire?
- iii) La démontrer.
- d) Soit $A \in \mathcal{M}_n(\mathbb{C})$. Soient $\lambda \in \operatorname{Sp}(A)$ et X un vecteur propre associé.
 - i) Montrer que, pour tout $i \in [1, n], |\lambda x_i| \leq (1 + |a_{i,i}|) ||X||_{\infty}$.
- ii) En déduire un disque dépendant des coefficients de A contenant toutes ses valeurs propres.
- 33. On dit que $A \in \mathcal{M}_n(\mathbb{R})$ est dans \mathcal{H}_n si et seulement si elle est à coefficients dans $\{-1,1\}$ et ses colonnes sont orthogonales. On dit qu'elle est normalisée si sa première ligne et sa première colonne ne contiennent que des 1.

On importera numpy, linalg et random.

- a) Dénombrer les matrices de \mathcal{H}_2 avec Python.
- **b)** Soit $M \in \mathcal{M}_n(\mathbb{R})$ à coefficients dans $\{-1,1\}$. Montrer que $M \in \mathcal{H}_n$ si et seulement si $\frac{1}{\sqrt{n}}M \in \mathcal{O}_n(\mathbb{R})$.
- \vec{c}) Caractériser toutes les transformations géométriques associées aux matrices de \mathcal{H}_2 .
- d) Montrer que si $A \in \mathcal{H}_n$ alors A^T aussi et qu'il en est de même si l'on multiplie par -1 une ligne ou une colonne de A.
- e) Dénombrer les matrices normalisées de \mathcal{H}_3 et \mathcal{H}_4 avec Python.
- f) Soit $M \in GL_n(\mathbb{R})$. On note (c_1, \ldots, c_n) ses colonnes et $(\varepsilon_1, \ldots, \varepsilon_n)$ la base orthonormée obtenue par l'algorithme de Gram-Schmidt à partir de (c_1, \ldots, c_n) .

On note $P \in GL_n(\mathbb{R})$ telle que pour tout $k \in [1, n]$, $P\varepsilon_k = c_k$.

- g) Caractériser MP^{-1} et en déduire que $\det(M)^2 = \det(P)^2$.
- **h)** Montrer que $|\det(M)| \leqslant \prod_{i=1}^{n} ||c_i||$.

Que donne cette inégalité sur \mathcal{H}_n ? Vérifier avec Python.

34. On pourra utiliser import numpy as np, import numpy.linalg as alg. On étudie la matrice $A_n \in \mathcal{M}_{n+1}(\mathbb{R})$ définie par

$$\forall (i,j) \in [0,n]^2, \quad [A_n]_{i+1,j+1} = \frac{1}{n-i+j-1} \binom{n}{i}.$$

a) Écrire une fonction mat(n) qui renvoie A_n . On pourra utiliser sc.comb(n, i) pour le coefficient binomial après avoir validé import scipy.special as sc.

Étudier la diagonalisablité de A_n pour $n \in [2, 6]$.

b) i) Pour tous vecteurs $x, y \in \mathcal{M}_{n+1,1}(\mathbb{R})$, on pose $\langle x, y \rangle_n = \sum_{i=0}^n \sum_{j=0}^n \frac{x_i, y_j}{i+j+1}$, ce qui définit un produit scalaire sur $\mathcal{M}_{n+1,1}(\mathbb{R})$.

Écrire une fonction prod_scal(x, y, n) qui renvoie $\langle x, y \rangle_n$.

ii) Pour $n \in [2, 8]$, étudier l'orthogonalité des sous-espaces propres des A_n . On définit maintenant une application u sur $\mathbb{R}_n[X]$ par

$$\forall P \in \mathbb{R}_n[X], \quad \forall x \in \mathbb{R}, \quad u(P)(x) = \int_0^1 (x-t)^n P(t) \, dt.$$

- c) Montrer que u est un endomorphisme de $\mathbb{R}_n[X]$ et que A_n est sa matrice dans la base canonique.
- d) Montrer que u est autoadjoint pour le produit scalaire défini sur $\mathbb{R}_n[X]$ par

$$\forall P, Q \in \mathbb{R}_n[X], \quad \langle P, Q \rangle = \int_0^1 P(t) Q(t) dt.$$

En déduire que A_n est diagonalisable et que ses sous-espaces propres sont orthogonaux.

- **35.** Soit \mathcal{E}_n l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{R})$ dont tous les coefficients sont strictement positifs.
- a) i) Coder une fonction Python qui renvoie une matrice de \mathcal{E}_n à coefficients entiers.
- ii) Une matrice de \mathcal{E}_n peut-elle avoir des valeurs propres négatives? Strictement négatives?

Soit $A \in \mathcal{E}_n$. On note $\lambda_1 \leqslant \cdots \leqslant \lambda_n$ ses valeurs propres et (X_1, \dots, X_n) une base orthonormée telle que, pour tout $i \in \{1, \dots, n\}$, $AX_i = \lambda_i X_i$.

- **b)** Montrer que, pour tout $Y \in \mathbb{R}^n$, $Y^TAY \leqslant \lambda_n ||Y||^2$.
- c) Conjecturer le signe des coefficients de X_n .
- d) Étudier le cas d'égalité dans la question b).
- e) Prouver la conjecture de la question c).

Analyse

- **36.** On dit qu'une suite (u_n) converge vers a plus rapidement que (v_n) lorsque $u_n a = o(v_n a)$.
- a) Si $n \ge 2$, on note u_n le demi-périmètre du polygone régulier à 2^n côtés inscrit dans le cercle unité. Montrer que $u_n = 2^n \sin(\pi/2^n)$.
- **b**) On pose $u_n'=\frac{4u_{n+1}-u_n}{3}$. Avec Python, calculer u_n et u_n' pour $n\in\{2,...,10\}$. Quelles conjectures peut-on faire sur les limites de (u_n) et (u_n') et sur leurs vitesses de convergence?
- c) Soit (v_n) une suite vérifiant $v_n=a+\lambda k_1^n+O(k_2^n)$, où $a\in\mathbb{R},\,\lambda\in\mathbb{R}^*$ et $0<|k_2|<|k_1|<1$. On pose $v_n'=\frac{v_{n+1}-k_1v_n}{1-k_1}$.
 - i) Comparer les vitesses de convergence de (v_n) et (v_n') .
 - ii) En déduire une preuve de la conjecture faite en b).

- d) On considère une suite (w_n) telle que, pour tout $n, w_n \neq w_{n-1}$, et admettant le même développement asymptotique qu'en c). On pose $c_n = \frac{w_{n+1} w_n}{w_n w_{n-1}}$ et $w_n' = \frac{w_{n+1} c_n w_n}{1 c_n}$.
 - i) Montrer que (w'_n) est bien définie et qu'elle converge vers une limite à préciser.
 - \vec{u}) Comparer les vitesses de convergence de (w_n) et (w'_n) .
- 37. Soit $\beta \in \mathbb{R}$. On considère les suites $(y_n)_{n\geqslant 2}$ et $(v_n)_{n\geqslant 1}$ définies par $\forall n\geqslant 1, v_n=\frac{1}{n^\beta}$ et $\forall n\geqslant 2, y_n=\frac{1}{n\ln^2(n)}$. On dit qu'une suite (u_n) à termes strictement positifs vérifie (F_λ) , où $\lambda \in \mathbb{R}$, lorsque $\frac{u_{n+1}}{u_n}=1-\frac{\lambda}{n}+o\left(\frac{1}{n}\right)$.
- a) À l'aide de Python, déterminer le réel λ tel que (v_n) vérifie (F_λ) . Étudier la convergence de $\sum v_n$. Démontrer ces résultats.
- **b**) Mêmes questions avec (y_n) .

Dans ce qui suit, on considère (u_n) vérifiant (F_{λ}) .

- *i*) On suppose $\lambda < 0$. Montrer que $\sum u_n$ diverge.
- ii) On suppose $\lambda > \beta > 1$. Montrer qu'il existe $N \in \mathbb{N}$ tel que $\forall n \geqslant N, \frac{u_{n+1}}{u_n} \leqslant \frac{v_{n+1}}{v_n}$. En déduire la nature de $\sum u_n$.
 - iii) On suppose $0 \leqslant \lambda < 1$. Montrer que $\sum_{n=1}^{\infty} u_n$ diverge. Que dire dans le cas $\lambda = 1$?
- f) Pour $n \ge 1$, on pose $w_n = \sqrt{(n-1)!} \prod_{k=1}^{n-1} \sin \frac{1}{\sqrt{k}}$. Déterminer la nature de $\sum w_n$.
- **38.** Pour $n \in \mathbb{N}^*$, on pose $U_n = \sin(\pi n! e)$, $V_n = \sin\left(\frac{\pi n!}{e}\right)$, $S_n = n! \sum_{k=1}^n \frac{1}{k!}$ et

$$R_n = n! \sum_{k=n+1}^{+\infty} \frac{1}{k!}.$$

- a) Écrire deux fonctions $\operatorname{Un}(n)$ et $\operatorname{Vn}(n)$ en Python qui renvoient une liste des n premiers termes des suites (U_n) et (V_n) respectivement. Tracer les courbes correspondantes. Que remarque-t-on? Que peut-on dire de la nature de $\sum U_n$ et $\sum V_n$?
- **b)** Calculer $S_n + R_n$.
- c) i) Montrer que S_n est un entier de même parité que n+1. En déduire que : $U_n=(-1)^{n+1}\sin(\pi R_n)$.
 - ii) Étudier, pour $n \in \mathbb{N}^*$, le signe de $R_n R_{n-1}$.
 - iii) Montrer que, pour $n \in \mathbb{N}^*$, $R_n \leqslant \frac{1}{n}$.
 - *iv*) En déduire la nature de la série de terme général U_n .
- **d**) On pose $T_n = n! \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{k!}$.
 - i) Montrer que, pour tout n dans \mathbb{N} , $V_n = (-1)^n \sin(\pi T_n)$.

- ii) Déterminer un équivalent de T_n .
- iii) En déduire la nature de la série de terme général V_n .
- **39.** Soit $(f_m)_{m\in\mathbb{N}}$ la suite de fonctions définie par $f_0:x\in[0,1]\mapsto 1$ et, pour n dans \mathbb{N} , $f_{n+1}: x \in [0,1] \mapsto \int_0^x 2\sqrt{f_n(t)} \, dt$. On pose, $a_0 = 0$ et, pour $n \in \mathbb{N}$, $a_{n+1} = \frac{a_n}{2} + 1$, $b_0=1$ et, pour $n\in\mathbb{N},$ $b_{n+1}=rac{4\sqrt{b_n}}{a_n+2}.$
- a) Écrire une fonction qui, pour $n \in \mathbb{N}$, renvoie (a_n, b_n) . Conjecturer la convergence et les limites éventuelles des suites (a_n) et (b_n) .
- **b)** Montrer que, pour tout n dans \mathbb{N} et pour tout x dans [0,1], $f_n(x) = b_n x^{a_n}$.
- c) Tracer f_2, f_3, f_7, \ldots pour $x \in [0, 1]$. Conjecture sur la convergence de $(f_n)_{n \in \mathbb{N}}$?
- d) Montrer que (a_n) converge et donner sa limite. e) Montrer que $(2^{n+1}b_{n+1}-2^nb_n)_{n\in\mathbb{N}}$ est bornée. En déduire que (b_n) converge et donner sa limite.
- f) En déduire la convergence de la suite de fonctions $(f_n)_{n\in\mathbb{N}}$.
- g) La convergence est-elle uniforme?
- **40.** a) i) Exercise un code python prenant en argument deux fonctions f et q, une liste $\sigma =$ $[t_0, \ldots, t_m]$ et qui renvoie $\max\{|f(t_i) - g(t_i)|, i \in [0, n]\}.$
- ii) On admet que, si f est une fonction continue sur [a,b] et $\varepsilon>0$, alors il existe $a=t_0<0$ $t_1 < \cdots < t_m = b$ tels que, pour tout $i, |f(t_{i-1}) - f(t_i)| \le \varepsilon$. Écrire un code python prenant f et ε en argument et renvoyant la liste $\sigma = [t_0, \dots, t_m]$.
- b) Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions telle que, pour tout n, f_n est continue et croissante sur [a, b]. On suppose que $(f_n)_{n \in \mathbb{N}}$ converge simplement vers une fonction f.
 - i) Montrer que f est croissante sur [a, b].
- **ii)** On suppose de plus f continue. Soient $\varepsilon > 0$ et (t_0, \ldots, t_m) tels que pour tout i, $|f(t_{i-1}) - f(t_i)| \leq \varepsilon$. Soit $i \in \{1, \ldots, m\}$. Démontrer que, pour tout x dans $[t_{i-1}, t_i]$, $f_n(t_{i-1}) - f(t_i) \leqslant f_n(x) - f(x) \leqslant f_n(t_i) - f(t_{i-1})$. En déduire que $(f_n)_{n \in \mathbb{N}}$ converge uniformément vers f.
 - iii) Si on ne suppose plus f continue, que dire de la convergence de $(f_n)_{n\in\mathbb{N}}$?
- c) On définit la suite $(P_n)_{n\in\mathbb{N}}$ de fonctions définies par $P_0:t\mapsto 0$ et pour tout n dans \mathbb{N} , pour tout t dans [0, 1], $P_{n+1}(t) = \frac{1}{2}(P_n(t)^2 + t)$.
 - i) Démontrer que $(P_n)_{n\in\mathbb{N}}$ converge uniformément vers une fonction à préciser.
 - ii) Déterminer à l'aide de Python $Q \in \mathbb{R}[X]$ tel que : $\forall x \in [-1,1], |Q(x)-|x|| \leq 0,01$.
- **41.** a) i) Montrer que, si l'on pose $z_1=1$ et, pour $n\in\mathbb{N}, z_{n+1}=z_n+i\frac{z_n}{|z_n|}$ on définit une suite $(z_n)_{n\in\mathbb{N}^*}$.
 - ii) Calculer les 10 premiers termes de la suite.
- **b)** Soit $g \in \mathcal{C}^1(\mathbb{R}^{+*}, \mathbb{R})$ telle que : $\forall t > 0, g(t+1) g(t) = \arctan\left(\frac{1}{\sqrt{t}}\right), g(1) = 0$ et $g'(t) \underset{t \to +\infty}{\longrightarrow} 0.$
- i) Montrer que g'(t) s'écrit sur $]0, +\infty[$ comme une somme d'une série de fonctions.

$$\textit{ii}) \ \ \text{En d\'eduire que, pour } t>0, \\ g(t)=\sum_{p=0}^{+\infty} \left(\arctan\left(\frac{1}{\sqrt{1+p}}\right)-\arctan\left(\frac{1}{\sqrt{t+p}}\right)\right).$$

c) Soit, pour $n \in \mathbb{N}^*$, A_n le point d'affixe z_n .

Soit V l'arc paramétré par $\left(x(t) = \sqrt{t} \cos(g(t)), \ y(t) = \sqrt{t} \sin(g(t))\right)$.

- i) Tracer simultanément A_n pour n dans $\{1, \ldots, 10\}$ et V pour t dans [1, 10].
- ii) Faire une conjecture et la démontrer.
- d) Trouver un équivalent de g(n) quand n tend vers $+\infty$.

42. Soit
$$f: t \mapsto \sum_{k=1}^{+\infty} \frac{t^k}{k(k+1)(1-t^k)}$$
.

a) Donner le domaine de définition D de f.

b) Définir une fonction, avec un coût linéaire, représentant $f_n: t \mapsto \sum_{k=1}^n \frac{t^k}{k(k+1)(1-t^k)}$.

c) Tracer $t\mapsto f_{100}(t)+f_{100}(1/t)$ pour t appartenant à $D\cap[-2,2]$. Que pouvez-vous conjecturer?

d) Prouver cette conjecture.

e) Montrer que f est continue sur D.

f) Soit $u \in]-1, 1[$. Écrire $\sum_{k=1}^{+\infty} \frac{u^k}{k(k+1)}$ sous la forme de fonctions usuelles.

g) Soit $t \in]-1,1[$. Trouver une fonction F telle que $f(t) = \sum_{n=1}^{+\infty} F(t^n)$.

h) Déterminer un équivalent de f en 1^- .

43. Pour $x \in \mathbb{R}$, on pose $S(x) = \sum_{n=0}^{+\infty} \frac{e^{-|x-n|}}{2^n}$ et $F(x) = 2^x S(x)$.

a) Tracer les graphes de S sur [-6, 6] et de F sur [0, 30].

b) Montrer que S est définie et continue sur \mathbb{R} .

c) Déterminer la limite de S en $+\infty$.

d) Montrer que S est intégrable sur $[0, +\infty[$ et calculer $\int_0^{+\infty} S(x) dx$.

e) i) Trouver une relation entre S(x) et S(x+1); en déduire une relation entre F(x) et F(x+1).

ii) Pour $x \in [0, +\infty[$, exprimer F(x) en fonction de F(x - |x|).

44. a) Soit $f: x \mapsto \sum_{n \in \mathbb{Z}} x^{n^2}$.

i) Donner le domaine de définition D de f.

Montrer que, pour $x \in D$, $f(x) = 1 + 2\sum_{n=1}^{+\infty} x^{n^2}$.

- ii) Écrire une fonction qui prend en argument $x \in D$ et $n \in \mathbb{N}$, et qui renvoie la somme $\sum^{n} x^{k^2}.$
 - iii) Déterminer la valeur de n pour avoir une approximation de f(1/2) à 10^{-5} près.
- iv) Sur un même graphe, tracer une approximation de f et de $g: x \mapsto \sqrt{\frac{\pi}{1-x}}$. Conjecture?
 - v) Déterminer un équivalent de f en 1. Ind. On rappelle que $\int_{-\infty}^{+\infty} e^{-\alpha t^2} dt = \sqrt{\frac{\pi}{\alpha}}$.
- **b)** On définit, pour $n \in \mathbb{N}$, $r_2(n)$ comme le cardinal de $\{(a,b) \in \mathbb{Z}^2, a^2 + b^2 = n\}$.
- i) Écrire une fonction python prenant en argument un entier n et renvoyant la valeur de $r_2(n)$. On note $h: x \mapsto \sum_{n=1}^{\infty} r_2(n) x^n$.
 - \ddot{u}) Déterminer le rayon de convergence de la série entière définie par h.
- iii) Tracer sur un même graphe une approximation de h, et \sqrt{h} . Comparer avec le graphe de la fonction f.
- c) Démontrer la conjecture de la question précédente.
- **45.** Pour $n \in \mathbb{N}$, on pose $H_n = \{(p,q) \in \mathbb{N}^2, m = 2p + 3q\}$ et on note $\sigma(n)$ son cardinal, avec la convention $\sigma(n) = 0$ si H_n est vide.
- a) Montrer l'existence de $\sigma(n)$. Calculer $\sigma(0), \sigma(1), \sigma(2)$. Montrer que $\sigma(n) \ge 1$ pour $n \geqslant 3$
- **b)** À l'aide de python, tracer $\sigma(n)$ pour $n \in [0, 25]$.

Soit
$$S: x \mapsto \sum_{n=0}^{+\infty} \sigma(n) x^n$$

- c) Trouver le rayon de convergence de la série entière S.
 d) Montrer que, sur un intervalle I à préciser, $S(x) = \frac{1}{1-x^3} \times \frac{1}{1-x^2}$.
- e) On note $j=e^{\frac{2i\pi}{3}}$. Déterminer a,b,c,d,f tels que, pour tout z dans le disque ouvert de centre 0 et de rayon 1, $S(z)=\frac{a}{1-z}+\frac{b}{(1-z)^2}+\frac{c}{1+z}+\frac{d}{1-jz}+\frac{f}{1-j^2z}$.
- f) En déduire une expression de $\sigma(n)$ pour tout n.
- **46.** Soit $f: x \in]-1, 1[\mapsto \frac{1}{(1-x^3)(1-x^5)}$.

 a) Montrer que f est développable en série entière au voisinage de 0. Donner un minorant strictement positif de son rayon de convergence. On note $f: x \mapsto \sum_{n=0}^{+\infty} c_n x^n$
- **b**) Écrire une fonction qui calcule c_n
- c) Calculer c_n pour $n \in \{0, \dots, 199\}$. Calculer $c_{n+15} c_n$ pour $n \in \{0, \dots, 184\}$. d) Montrer que $(1 X^{15})(1 X)$ est divisible par $(1 X^3)(1 X^5)$. On note Q le quotient. Que vaut Q(1)? Quel est le degré de Q?
- e) Montrer que la fonction $x \mapsto (1 x^{15}) f(x) \frac{1}{1 x}$ est polynomiale.

- f) En déduire une relation entre c_{n+15} et c_n
- g) Soient $n \in \mathbb{N}$ et D_n l'ensemble des couples (u, v) tels que 3u + 5v = n. On note d_n son cardinal. Écrire une fonction qui calcule d_n . En déduire une relation entre c_n et d_n
- **47.** *a) i)* Pour $n \in \mathbb{N}^*$, on pose $H_n = \sum_{i=1}^n \frac{1}{k}$. Montrer que $H_n \sim \ln n$.
- \ddot{u}) Pour $r \in \mathbb{N}$, on pose $S_r = \sum_{n=1}^{+\infty} \frac{H_n}{(n+1)^r}$. Pour quelles valeurs de r, la somme S_r est-elle finie?
 - *iii*) À l'aide de Python, calculer S_3 et S_4 à 10^{-5} près.
- **b**) i) Pour tous p et q dans \mathbb{N} , on pose $I_{p,q}=\int_0^1 t^p (\ln t)^q \, \mathrm{d}t$. Vérifier que l'intégrale $I_{p,q}$ est bien convergente.
- \ddot{u}) Soit $q \ge 1$. Trouver une relation de récurrence entre $I_{p,q}$ et $I_{p,q-1}$. En déduire que $I_{p,q} = \frac{(-1)^q q!}{(p+1)^{q+1}}.$
- c) i) Donner les développements en séries entières de $t \mapsto -\ln(1-t)$ et $t \mapsto \frac{1}{1-t}$; préciser les rayons de convergence.
 - \ddot{u}) Montrer, lorsque cela est défini, $S_r = \frac{(-1)^r}{(r-1)!} \int_0^1 (\ln t)^{r-1} \frac{\ln(1-t)}{1-t} dt$.
 - *iii*) En déduire $S_2 = \frac{1}{2} \int_0^1 \frac{(\ln x)^2}{1-x} dx$.
- *iv*) On définit la fonction ζ de Riemann par $\forall s>1,$ $\zeta(s)=\sum_{s=1}^{+\infty}\frac{1}{n^s}.$ Exprimer S_2 à l'aide de $\zeta(3)$. En déduire une valeur approchée de S_2 à 10^{-5} près.
- **48.** *a) i)* Conjecturer, à l'aide de python, la nature de l'intégrale $\int_{0}^{+\infty} \frac{\sin^2(t)}{t^2} dt$. Préciser une valeur approchée.
- \vec{u}) De même, conjecturer la nature de l'intégrale $I_m = \int_0^{+\infty} \frac{\sin^{2m+1}(t)}{t} \, \mathrm{d}t$ pour un entier $m \in \mathbb{N}$. Que peut-on observer lorsque $m \to +\infty$?
- b) i) Montrer que l'intégrale de la question a) i) converg
 - \vec{u}) Par une intégration par parties, montrer que $\int_0^{+\infty} \frac{\sin^2(t)}{t^2} dt = \int_0^{+\infty} \frac{\sin t}{t} dt$.
- c) On considère, pour entier $m \in \mathbb{N}$, $I_m = \int_0^{+\infty} \frac{\sin^{2m+1}(t)}{t} dt$.
 - *i*) Montrer que I_m converge pour tout m.
 - \vec{u}) Montrer que la suite $(I_m)_{m\in\mathbb{N}}$ est décroissante et positive. En déduire qu'elle converge.
 - *iii*) Étudier la limite $(I_m)_{m\in\mathbb{N}}$.

Probabilités

49. Soit (X,Y) un couple de variables aléatoires dont la loi conjointe est donnée par $\forall (i,j) \in$

$$\mathbb{N}^2$$
, $\mathbf{P}(X = i, Y = j) = \frac{c e^{-i}}{j^2 + 3j + 2}$.

- a.i) Déterminer la valeur de c.
 - ii) Donner la loi de X, son espérance et sa variance.
 - iii) Déterminer la loi de Y. Admet-elle une espérance finie?
 - iv) Les variables X et Y sont-elles indépendantes?
- **b**) On pose Z = 5X + 7Y.
 - i) Écrire une fonction qui reçoit un entier $n \in \mathbb{N}$ et retourne la valeur de $\mathbf{P}(Z=n)$.
 - \vec{u}) Écrire une fonction qui retourne $(\mathbf{P}(Z=k))_{0 \le k \le 34}$.
- *c*) *i*) Montrer que P(Z = 23) = 0.
 - ii) Montrer que $\forall k > 23$, $\mathbf{P}(Z = k) > 0$.
- d) Déterminer les couples $(a, b) \in \mathbb{N}^2$ tels que $\forall n \in \mathbb{N}, \mathbf{P}(aX + bY = n) > 0$.
- **50.** Un jeton effectue une marche aléatoire sur quatre cases C_i $(1 \le i \le 4)$ de la façon suivante :
- à l'instant n=0, le jeton est sur la case C_1 ;
- à l'instant n si le jeton est en C_1 , il se déplace à l'instant n+1, de façon équiprobable, sur l'une des quatre cases (il est donc possible qu'il ne bouge pas); si le jeton est en C_i avec $i \in \{2,3,4\}$, il se déplace à l'instant n+1 en C_{i-1} .

Soit X_k la variable aléatoire donnant le numéro de la case où le jeton se trouve à l'instant k.

On pose
$$U_k = \begin{pmatrix} \mathbf{P}(X_k = 1) \\ \mathbf{P}(X_k = 2) \\ \mathbf{P}(X_k = 3) \\ \mathbf{P}(X_k = 4) \end{pmatrix}$$
.

- a) i) Écrire une fonction de paramètre n qui renvoie la liste des numéros des cases où le jeton s'est trouvé entre les instants 0 et n.
- ii) Écrire une fonction de paramètre k qui renvoie une approximation empirique de U_k pour $k \in \{10, 50, 100\}$. Conjecture?
- **b**) i) Déterminer une matrice A telle que $\forall n \in \mathbb{N}, \ U_{n+1} = AU_n$.
- \ddot{u}) Montrer que 1 est valeur propre de A et donner un vecteur propre associé. On suppose que A possède trois autres valeurs propres distinctes de module strictement plus petit que 1, deux d'entre elles étant conjuguées non réelles.
 - iii) Montrer que (U_n) converge et déterminer sa limite.
- c) On note $Y_k(i)$ la variable aléatoire qui donne le nombre de passages sur la case i entre les instants 0 et k compris. Écrire une fonction donnant les $Y_n(i)$ pour $i \in \{1, 2, 3, 4\}$, puis une fonction donnant $\mathbf{E}(Y_{100}(i))$. Conjecture.
- **51.** On considère $N \in \mathbb{N}$ pièces de monnaie. Soit $p \in]0,1[$. On suppose que chaque pièce à une probabilité p de donner pile et q=1-p de donner face. On lance simultanément toutes les pièces, et l'on ne conserve que celles ayant donné pile. On réitère ensuite l'opération, avec les pièces restantes.

Pour $k \in \mathbb{N}$, on note N_k la variable aléatoire correspondant au nombre de pièces restantes à l'issue du k-ième lancer. On note aussi G_k la série génératrice de la variable aléatoire N_k . On admet que N_0 est la variable aléatoire constante égale à N. Ainsi, on a $G_0: t \mapsto t^N$.

- a) Déterminer la loi de la variable aléatoire N_1 , son espérance et sa variance. Soit $k \in \mathbb{N}^*$. Donner l'image de N_k .
- b) On souhaite modéliser l'expérience sous PYTHON.
- i) Écrire une fonction jets (N, p, k) qui prend en argument $N \in \mathbb{N}$ le nombre de pièces initial, p la probabilité d'obtenir face et k le nombre de lancers, et qui simule la variable aléatoire N_k .
- ii) Écrire une fonction moyenne (N, p, k) qui estime la moyenne du nombre de pièces restantes à l'issue du k-ième lancer pour 10^5 jets.
- iii) Tracer la fonction $p \mapsto \text{moyenne}(N, p, k)$ pour quelques valeurs de N et de k. Que peut-on en conjecturer sur la valeur de $\mathbf{E}(N_k)$?
- c) Montrer que

26

$$\forall k \in \mathbb{N}^*, \quad \forall i \in \llbracket 0, N \rrbracket, \qquad \mathbf{P}(N_{k+1} = i) = \sum_{j=i}^N \mathbf{P}(N_k = j) \binom{j}{i} p^i q^{j-i}.$$

- d) Montrer que $G_{k+1}(t) = G_k(q+pt)$ puis que $G_k(t) = (1-p^k+p^kt)^N$.
- e) Déterminer la loi de N_k , son espérance et sa variance.
- f) Soit T la variable aléatoire définie par $T = \inf\{k \in \mathbb{N}^*, N_k = 0\} \in \mathbb{N}^* \cup \{+\infty\}$. Que représente T? Proposer un programme $T(\mathbb{N}, \mathbb{P})$ permettant de simuler une réalisation de T.
- **52.** Un tirage au sort quotidien permet à un collectionneur de gagner une carte. Il y a N cartes en tout, et on pose $p = [p_0, \ldots, p_{N-1}]$, où p_i est la probabilité que la carte numéro i soit tirée au sort, quel que soit le jour.

Pour $n \geqslant 1$, soit X_n la variable aléatoire donnant le numéro de la carte tirée le jour n, et $Y_{i,n}$ celle qui donne le nombre de cartes numéro i obtenues au bout de n jours. On note aussi $Z_{i,n} = \mathbf{1}_{(Y_{i,n}>0)}$ l'indicatrice de l'événement $(Y_{i,n}>0)$, on pose $V_n = [Y_{0,n}, \dots, Y_{N-1,n}]$

et
$$W_n = \sum_{i=0}^{N-1} Z_{i,n}$$
.

On suppose connue une fonction tirage(p) qui renvoie une carte selon les probabilités contenues dans p.

- a) Donner un code qui calcule W(n).
- **b**) Donner un code qui renvoie son espérance. Application numérique avec n=N=365 et p uniforme.
- c) Donner la loi de $Z_{i,n}$ et calculer $\mathbf{E}(W_n)$.
- d) Calculer $V(W_n)$.
- e) Soient $\alpha=(\alpha_0,\dots,\alpha_{N-1})\in\mathbb{N}^N$ et $s=\sum_{i=0}^{N-1}\alpha_i$, supposée valoir au moins 1. Calculer $\mathbf{P}(V_s=\alpha)$.
- **53.** On considère la situation suivante. Un amateur de chewing-gum possède deux paquets de chewing-gum, chacun en contenant N. Il choisit aléatoirement un paquet à chaque tirage. On note X la variable aléatoire correspondant au nombre de chewing-gums dans l'autre paquet lorsqu'il se rend compte qu'un paquet est vide.

- a) À l'aide de Python, conjecturer, pour tout $p \in \mathbb{N}$, la valeur de $\sum_{j=1}^{2p} \binom{j}{p} \frac{1}{2^{j}}$.
- b) i) Écrire une fonction Python simulant la situation décrite. Elle prendra en argument N, le nombre de chewing-gums dans un paquet, et renverra le nombre de chewing-gums restants dans le paquet a priori non vide.
- ii) En déduire une fonction calculant une valeur approchée de E(X), prenant N en argument.
 - iii) Tracer $\mathbf{E}(X)$ en fonction de N, pour N entre 1 et 100.

Au k-ième tirage, on note Z_k , la variable aléatoire qui vaut 0 si l'amateur prend le paquet de la poche de gauche ou 1 s'il prend celui de la poche de droite. On pose $S_n = Z_0 + Z_1 + \cdots + Z_n$. On note T la variable aléatoire qui prend la valeur du dernier tirage (lorsque l'amateur se rend compte qu'un paquet est vide).

- c) Donner la loi de S_n .
- **d**) Donner $T(\Omega)$. Écrire l'événement (T=t) en fonction d'événements de la forme $(S_n=i)$ et $(Z_k = z)$.
- e) En déduire la loi de T. Faire le lien avec la conjecture de la première question.
- f) Déterminer l'espérance de T.
- g) Déterminer la loi et l'espérance de X. Vérifier le résultat de la deuxième question.
- **54.** Soit $n \in \mathbb{N}^*$ fixé. On lance n dés équilibrés à 6 faces. Après chaque lancer, on élimine les dés qui ont fait 1. S'il en reste, on continue les lancers. On note T_i le rang du premier lancer pour lequel le dé i a donné 1. On note N_n le nombre total de lancers.
- a) i) Écrire un code permettant de simuler T_1 .
 - ii) Écrire un code permettant de simuler N_n .
 - iii) Écrire un code permettant d'estimer l'espérance de N_n . Justifier l'approximation.
 - *iv*) Tracer le graphe de l'espérance de N_n pour $n \in \{1, \dots, 20\}$.
- **b**) Donner la loi de T_i , son espérance et sa variance.
- c) i) Calculer, pour $k \in \mathbb{N}^*$, $\mathbf{P}(N_n \leqslant k)$.
- ii) Déterminer la nature de la série $\sum \mathbf{P}(N_n > k)$.
 d) Soit X une variable aléatoire à valeurs dans \mathbb{N} .

Montrer que, pour tout
$$p \in \mathbb{N}^*$$
, $\sum_{k=0}^{p-1} \mathbf{P}(X > k) = k\mathbf{P}(X > k) + \sum_{k=1}^{p} k\mathbf{P}(X = k)$

e) On suppose que la série $\sum \mathbf{P}(X>k)$ converge et que X admet une espérance finie.

Montrer que
$$\mathbf{E}(X) = \sum_{k=0}^{+\infty} \mathbf{P}(X > k)$$

- f) Montrer que N_n admet une espérance finie.
- g) Calculer cette espérance et la comparer aux valeurs approchées obtenues par la simulation.

Centrale II - Python - PC

Algèbre

- **55.** On dit que $A=(a_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{R})$ est stochastique si les $a_{i,j}$ sont positifs et, pour $\text{tout } 1\leqslant i\leqslant n, \sum_{i=1}^n a_{i,k}=1.$
- a) Montrer que, si A et B sont stochastiques, alors AB l'est.
- b) On suppose que A est stochastique et que $(A^p)_{p\geqslant 1}$ converge. La limite de cette suite est-elle stochastique?
- c) Si A est stochastique, montrer que 1 est valeur propre de A.
- d) Soit λ une valeur propre d'une matrice A stochastique. Montrer que $|\lambda| \leq 1$. Ind. Considérer $X = (x_1, \dots, x_n)^T$ un vecteur propre associé à λ et $k \in [1, n]$ tel que $|x_k| = \max\{|x_i|, i \in [1, n]\}.$
- e) i) Une fonction d'affichage de matrices est fournie.

Les matrices
$$U = \begin{pmatrix} 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \\ 1/3 & 1/3 & 1/3 \end{pmatrix}$$
 et $V = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ sont-elles stochastiques?

- ii) Écrire une fonction suite (M) qui renvoit les 20 premières puissances de M. La fonction power (M, k) est déjà importée. Que dire des limites des suites $(U^p)_p$ et $(V^p)_p$?
 - *iii*) Conjecturer la diagonalisabilité dans $\mathcal{M}_3(\mathbb{C})$ et dans $\mathcal{M}_3(\mathbb{R})$?
 - iv) Démontrer cette conjecture.
- **56.** Une fonction PolyRand(n) qui génère un polynôme aléatoire de degré n à coefficients complexes est fournie. Pour $P = z_0 + z_1 X + \cdots + z_n X^n \in \mathbb{C}[X]$, on pose

$$M(P) = |z_n| \prod_{i=1}^n \max(1, |z_i|), \Delta(P) = |z_n| \prod_{\substack{1 \le i, j \le n \\ \sqrt{\dots, T}}} |z_j - z_i|^2 \text{ et } \delta(P) = \min_{\substack{(i, j) \in [\![1, n]\!]^2 \\ i \ne j}} |z_i - z_j|.$$

Pour
$$C_k \in \mathcal{M}_{n,1}(\mathbb{C})$$
, on pose $||C_k|| = \sqrt{\overline{C_k}^T C_k}$.

a) Montrer que $V = \begin{vmatrix} 1 & 1 & \dots & 1 \\ z_1 & z_2 & \dots & z_n \\ \vdots & \vdots & & \vdots \\ z_1^{n-1} & z_2^{n-1} & \dots & z_n^{n-1} \end{vmatrix} = \prod_{1 \leq i < j \leq n} (z_j - z_i)$

- b) Coder les fonctions M(P), delta(P), DELTA(P) correspondant à celles de l'énoncé.
- c) Coder une fonction comp(P) qui renvoie True ou False suivant que l'inégalité suivante est vraie : $\delta(P) \geqslant \frac{1}{M(P)^{n-1}} \sqrt{\frac{\Delta(P)}{n^{n+2}}}$.
- d) Tester l'inégalité pour des polynômes aléatoires de $\mathbb{C}[X]$ de degré allant de 2 à 21. Proposer une conjecture.
- e) À l'aide de l'algorithme de Gram-Schmidt, montrer que, pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$ de colonnes sont C_1, \ldots, C_n , $|\det(A)| \leqslant \prod_{k=1} \|C_k\|$. On admet que le résultat est encore valable pour les matrices de $\mathcal{M}_n(\mathbb{C})$.

f) On suppose que
$$\delta(P) = |z_1 - z_2|$$
 avec $|z_1| > |z_2|$.

Montrer que
$$V \le \sqrt{\sum_{k=1}^{n} |z_1^k - z_2^k|^2} \sqrt{\prod_{k=2}^{n} (1 + |z_k|^2 + \dots + |z_k|^{n-1})}$$
.

$$\text{Montrer que } \sqrt{\sum_{k=2}^{n} (1+|z_k|^2+\cdots+|z_k|^{n-1})} \leqslant n^{\frac{n-1}{2}} \left(\frac{M(P)}{n|z_1-z_2|}\right).$$

57. Pour
$$P,Q \in \mathbb{R}[X]$$
, on pose $\langle P,Q \rangle = \int_0^1 P(t)Q(t)\mathrm{d}t$.

Soit $\varphi: P \in \mathbb{R}[X] \mapsto (2X-1)P' + X(X-1)P''$.

- *a)* Montrer que $\langle \ , \ \rangle$ définit un produit scalaire sur $\mathbb{R}[X]$ et que φ est un endomorphisme de $\mathbb{R}[X]$.
- b) Pour P=Polynomial([1,-6,6]) tester les fonctions ps(P,P) et phi(P).

Ces fonctions correspondent au produit scalaire et à φ , et sont déjà implémentées.

- c) Générer aléatoirement sur l'ordinateur 10000 polynômes de degré au plus 6, calculer $\langle \varphi(P), P \rangle$, afficher la valeur maximale et la valeur minimale obtenue. En déduire une conjecture sur $\langle \varphi(P), P \rangle$. La fonction permettant de créer aléatoirement les polynômes était déjà définie.
- d) À l'aide d'une intégration par parties, montrer que, pour tout $d \in \mathbb{N}$, φ induit un endomorphisme autoadjoint φ_d de $\mathbb{R}_d[X]$.
- e) Démontrer la conjecture précédente.
- f) Déterminer les valeurs propres de φ_d .

Analyse

58. Soient
$$p \in \mathbb{N}$$
, $p \geqslant 2$ et $u_0, \ldots, u_{p-1} \in \mathbb{C}$. On définit la suite $(u_n)_{n \in \mathbb{N}}$ par $\forall n \in \mathbb{N}$

$$\mathbb{N}, \ u_{n+p} = u_{n+p-1} + u_{n+p-2} + \dots + u_n.$$
 On note $P = X^p - \sum_{i=0}^{p-1} X^i$ et pour tout $n \in \mathbb{N}$,

$$U_n = (u_n \ u_{n+1} \ \cdots \ u_{n+p-1})^T.$$

- a) Trouver une matrice $A \in \mathcal{M}_p(\mathbb{R})$, indépendante de u_0, \ldots, u_{p-1} , telle que, pour tout $n \in \mathbb{N}$, $U_{n+1} = AU_n$. En déduire une expression de U_n en fonction A, U_0 et n.
- **b**) Montrer que le polynôme caractéristique χ_A de A est P.
- c) On fournit un programme permettant de créer le polynôme P pour différentes valeurs de degré $p \in [\![2,8]\!]$ et donnant pour chaque P les racines, le module des racines et un tracé dans le plan complexe des points ayant pour affixe ces racines. Exécutez-le.
- d) Quelle conjecture pouvez-vous faire concernant les racines de P? Y a-t-il toujours une racine de module strictement supérieur aux autres?
- e) On pose T=(X-1)P. Montrer en utilisant T que P admet une racine réelle.

59. Soit
$$F: x \mapsto \int_0^x \frac{\mathrm{d}t}{\sqrt{1-t^4}}$$
. On note $\sigma = F(1)$.

- a) Montrer que σ est correctement définie.
- **b)** Montrer que F est continue sur [-1, 1] et de classe C^{∞} sur]-1, 1[.
- c) Montrer que F réalise une bijection de [-1,1] dans $[-\sigma,\sigma]$.

- d) Une fonction python F calculant F sur son domaine de définition est fournie.
 - *i*) Donner une valeur approchée de σ à 10^{-2} près.
 - \vec{i}) Tracer F^{-1} sur $[-\sigma, \sigma]$. Conjecture sur la dérivabilité de F^{-1} sur $[-\sigma, \sigma]$?
 - iii) Tracer les graphes de $x \mapsto 2F(x)$ et $x \mapsto F\left(\frac{2x(1+x^4)}{\sqrt{1-x^4}}\right)$. Que conclure?
- e) Montrer la conjecture obtenue ci-dessus.
- f) Montrer que F^{-1} se prolonge en une fonction G de classe \mathcal{C}^{∞} sur $[-\sigma, 3\sigma]$, et que la courbe représentative de G admet un axe de symétrie d'équation $x = \sigma$, puis qu'on peut prolonger G en une fonction de classe \mathcal{C}^{∞} sur \mathbb{R} .
- g) Calculer alors, pour tout x, la valeur de $x G'(x)^2$.
- **60.** a) Montrer que $t\mapsto \frac{\sin t}{t}$ se prolonge par continuité en 0. On note σ ce prolongement.
- **b**) Donner le développement en série entière de $t\mapsto \frac{\sin t}{t}$. Quel est son rayon de convergence?
- c) On fixe $\theta \in \mathbb{R}$. On pose, pour $N \in \mathbb{N}$, $F_N = \sum_{N=1}^{N} \sigma((n+t)\pi) \cos(n\theta)$. Montrer

que pour tout
$$t \in [0,1[,F_N(t)=\sigma(t\pi)\left(\sum_{n=1}^N\left(\frac{2(-1)^{n-1}t^2}{n^2-t^2}\cos(n\theta)\right)+1\right)$$
. En déduire la convergence de la suite $(F_N(t))_{N\in\mathbb{N}}$. On note $F(t)$ sa limite.

- **d**) i) On note $u_N(\theta) = F_N(1/2)$. écrire une fonction u(N, theta).
- ii) À l'aide de np.arccos() tracer $\arccos(u_{500}(\theta))$ pour $\theta \in [-3,3]$. Conjecture sur F(1/2)?
- iii) Une fonction I(theta) est fournie qui calcule la valeur d'une intégrale I_{θ} . Tracer sur un même graphe $u_N(\theta)$ pour $N \in \{1,3,5,7,9\}$ et $\frac{I_{\theta}}{\pi}$ pour $\theta \in [-3,3]$. Conjecture sur la valeur de I_{θ} ?
- e) Montrer que $\int_0^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}(1+xe^{i\theta})}$ converge. f) Montrer que $\int_1^{+\infty} \frac{\mathrm{d}x}{\sqrt{x}(1+xe^{i\theta})} = e^{-i\theta} \int_0^1 \frac{\mathrm{d}x}{\sqrt{x}(1+xe^{-i\theta})}$.

61. Soit, pour
$$k \in [0,1]$$
, $Z_k: x \mapsto \int_0^x \frac{\mathrm{d}t}{\sqrt{1-k^2\sin^2(t)}}$.

- a) Montrer que Z_k est bien définie pour $k \in [0, 1[$. Montrer que Z_k est impaire.
- **b**) Montrer que $\lim_{x\to +\infty} Z_k(x) = +\infty$. **c**) Montrer que Z_k réalise une bijection de $\mathbb R$ dans $\mathbb R$.
- **d**) Pour tout $x \in]-\pi/2,\pi/2[$, montrer que Z_1 est bien définie et impaire.
- e) On pose $S_N = \frac{x}{N} \sum_{n=1}^{N-1} \frac{1}{\cos\left(\frac{kx}{N}\right)}$. Montrer que $(S_N(x))_{N\geqslant 1}$ converge et déterminer sa limite.
- f) Calculer (Python) $S_{1000}(x)$ pour $x \in [-\pi/2, \pi/2]$.

- g) Tracer $x\mapsto \arctan\left(\exp\left(Z_1\left(x-\frac{\pi}{2}\right)\right)\right)$ pour $x\in[0,\pi/2[$. En déduire une estimation puis déterminer la valeur de $Z_1(x)$
- **62.** On note $\zeta: x \mapsto \sum_{k=1}^{+\infty} \frac{1}{n^x}$ et, pour $k \in \mathbb{N}$, $\varphi_k: x \mapsto \frac{\lfloor x \rfloor}{x^{k+1}}$. On note D le domaine de définition de ζ et K l'ensemble des $k \in \mathbb{N}$ tels que φ_k soit intégrable sur $[1, +\infty[$.
- a) Déterminer l'ensemble K.
- **b)** Pour $n \in \mathbb{N}^*$, on pose $u_n = \frac{1}{n} \ln\left(1 + \frac{1}{n}\right)$. Montrer que $\sum u_n$ converge. On note γ
- c) Déterminer le domaine de définition D de ζ . Pour $x \in D$, étudier la monotonie de $t \mapsto t^{-x}$ sur \mathbb{R}^{+*} et montrer que $\zeta(x) \leqslant 1 + \frac{1}{x-1}$.
- d) Montrer que $\sum_{k=1}^{\infty} (-1)^k \frac{\zeta(k)}{k}$ converge.
- e) À l'aide d'un programme Python, afficher les valeurs de $\frac{\zeta(k)}{\int_{1}^{+\infty} \zeta_{DL}(x) dx}$ pour $k \in [2, 10]$. Conjecture?
- f) Programmer avec Python une fonction S(n) qui prend comme argument $n \ge 2$ et renvoie $\sum_{k=2}^n (-1)^k \frac{\zeta(k)}{k}. \text{ Afficher les valeurs de } S(n) \text{ pour } n \in \llbracket 90, 100 \rrbracket \text{ et celle de } \frac{S(n)}{\int_1^{+\infty} \frac{\lfloor x \rfloor}{\pi^2 (n-1)^k} \mathrm{d}x}.$ Conjecture?
- g) Démontrer les conjectures faites aux questions précédentes.
- h) À l'aide de la fonction Python np.log qui donne le logarithme népérien, afficher une valeur approchée de γ .
- **63.** Soient $x \in \mathbb{R}^{+*}$ et $k \in \mathbb{N}$.
- $\begin{array}{l} \textit{a) i)} \ \ \text{Justifier l'existence et déterminer} : \lim_{t \to 0^+} t^k \ln(t), \lim_{t \to +\infty} \frac{\ln(t)}{t^k}, \lim_{t \to +\infty} \frac{\ln(t)}{e^t}. \\ \textit{ii)} \ \ \text{Soit} \ \varphi : t \mapsto \ln^k(t) t^{x-1} e^{-t}. \ \text{Déterminer} \lim_{t \to 0^+} t^{1-\frac{x}{2}} \varphi(t) \ \text{et} \lim_{t \to +\infty} e^{\frac{t}{2}} \varphi(t). \\ \end{array}$

 - iii) Montrer que l'intégrale $\int_{0}^{+\infty} \varphi(t) dt$ converge absolument.
- **b)** Soient $a, b \in \mathbb{R}$ avec 0 < a < b. Montrer que, pour $x \in [a, b]$ et $t \in \mathbb{R}^{+*}$, $\left| \ln(t)^k t^{x-1} e^{-t} \right| \le \left| \ln(t)^k t^{a-1} e^{-t} \right| + \left| \ln(t)^k t^{b-1} e^{-t} \right|$.
- c) Soit $\Gamma_k : x \mapsto \int_{0}^{+\infty} \ln(t)^k t^{x-1} e^{-t} dt$. Montrer que Γ est de classe \mathcal{C}^{∞} et que $\Gamma'_k = \Gamma_{k+1}$.
- d) Tracer $x \mapsto \frac{\Gamma(x+1)}{\Gamma(x)}$ sur [0,5;10]. Conjecture?
- e) Tracer $x \mapsto 2^x \frac{\Gamma\left(\frac{x+1}{2}\right) \Gamma\left(\frac{x}{2}\right)}{\Gamma(x)}$. Conjecture?
- f) Prouver les conjectures des questions précédentes.

- **64.** On pose, pour $\alpha \in]0,1[$, $I(\alpha)=\int_{0}^{+\infty}\frac{t^{\alpha-1}}{1+t}\mathrm{d}t$ et $f_{\alpha}:x\mapsto\int_{0}^{+\infty}\frac{t^{\alpha-1}e^{-xt}}{1+t}\mathrm{d}t$. On note aussi $\Gamma: x \mapsto \int_0^{+\infty} t^{x-1} e^{-t} dt$.
- a) Montrer que, pour tout $\alpha \in]0,1[$, l'intégrale définissant $I(\alpha)$ est convergente.
- **b)** Montrer que f_{α} est de classe \mathcal{C}^1 sur \mathbb{R}^+ .
- c) Déterminer $\lim_{x \to +\infty} f_{\alpha}(x)$.
- d) Tracer dans une même fenêtre pour $\alpha \in [0.05, 0.95]$ le graphe des fonctions $\alpha \mapsto$ $\frac{1}{\pi}\arcsin\left(\frac{I(\alpha)}{\pi}\right)$ et $\alpha\mapsto\Gamma(\alpha)\,\Gamma(\alpha-1)$. Établir une conjecture.
- e) Montrer que l'équation $(E): y'-y=\frac{1}{x^{\alpha}}$ admet une unique solution telle que $\lim_{x \to +\infty} y(x) = +\infty.$
- f) Trouver une équation différentielle satisfaite par f_{α} .
- g) Résoudre l'équation (E).
- **65.** Soit $\Gamma: x \mapsto \int_{0}^{+\infty} t^{x-1} e^{-t} dt$.
- a) Montrer que Γ est bien définie sur \mathbb{R}^{+*} .
- **b)** Montrer que, pour tout x > 0, $\Gamma(x+1) = x\Gamma(x)$. Exprimer $\Gamma(n+1)$ pour tout $n \in \mathbb{N}$.
- c) Montrer que $\left(\sum_{k=1}^{n} \frac{1}{k} \ln n\right)_{n \in \mathbb{N}^*}$ converge vers un réel γ .
- d) Programmer une fonction G(n,x) qui prend en argument un entier $n \in \mathbb{N}$ et un réel x>0 et qui renvoie $\frac{n^x n!}{x(x+1)\dots(x+n)}$.
- e) Tracer le nuage de points $\left(n,\frac{G(n,x_0)}{\Gamma(x_0)}\right)_{1\leqslant n\leqslant 500}$ pour $x_0\in [\![1,5]\!]$. Conjecture?

 f) Programmer une fonction $w(\mathbf{n},\mathbf{x})$ qui prend en argument un entier $n\in\mathbb{N}^*$ et un réel
- x>0 et qui renvoie $\dfrac{e^{-\gamma x}}{x\prod_{k=1}^n e^{-\frac{x}{k}}\left(1+\frac{x}{k}\right)}.$ g) Tracer sur un même graphique $\Gamma(x_0)$ et $w(n,x_0)$ pour $x_0=1,\,x_0=3,2,$ et $x_0=5.$

Pour $n \in \mathbb{N}^*$, on définit $g_n : t \in \mathbb{R}^{+*} \mapsto t^{x-1} \left(1 - \frac{t}{n}\right)^n \mathbf{1}_{]0,n]}(t)$.

Pour x, y > 0, on note $B(x, y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x + u)}$.

- **h**) Montrer que $\Gamma(x) = \lim_{n \to +\infty} \int_0^{+\infty} g_n(t) dt$. Vérifier la conjecture de la question **e**).
- i) Vérifier la conjecture de la question g.
- **66.** Soit $f: x \in \mathbb{R}^{+*} \mapsto \int_0^{\pi/2} \frac{\cos(t)}{x+t} dt$.
- a) Montrer que f est bien définie

- **b)** Montrer que f est continue.
- c) Montrer que f a pour limite 0 en $+\infty$.
- d) Une fonction calculant f est fournie dans Python. Afficher le graphe de f sur [0,1;10]. Conjecturer la monotonie et la limite de f en 0. Afficher le graphe sur [10,100] de xf(x) et de (x+1)f(x). Conjecturer un encadrement de f au voisinage de $+\infty$. Tracer $x\mapsto \frac{f(x)}{\ln x}$ et conjecturer un équivalent en 0.
- e) Démontrer la monotonie et la limite en 0 conjecturées à la question précédente.
- f) Montrer l'équivalent en $+\infty$.

67. Soient
$$f:(x,y)\mapsto \frac{1}{1-y^2}\ln\left(\frac{x+y}{1+xy}\right)$$
 et $F:x\mapsto \int_0^1 f(x,y)\mathrm{d}y$.

- a) Déterminer le domaine de définition D de f et montrer que c'est un ouvert.
- **b**) Soit S_D l'ensemble des $\varphi \in \mathcal{C}^1(D,\mathbb{R})$ telles que

$$\forall (x,y) \in D, \ 2y\varphi(x,y) + (1-x^2)\frac{\partial \varphi}{\partial x}(x,y) - (1-y^2)\frac{\partial \varphi}{\partial y}(x,y) = 0.$$

Montrer que $f \in S_D$.

- c) Montrer que $\forall (x,y) \in \mathbb{R}^+ \times]0,1[, \left| \ln \left(\frac{x+y}{1+xy} \right) \right| \leqslant |\ln(y)|$. En déduire que F est bien définie.
- d) Tracer la courbe représentative de F entre 0 et 50 et calculer F(0) et $F(10^4)$. Conjecture ? La fonction calculant F est déjà définie.
- e) Exprimer $F\left(\frac{1}{x}\right)$ à l'aide de F(x) et discuter de la conjecture établie ci-dessus.

Probabilités

68. On dispose d'une urne bleue et d'une urne rouge. L'urne bleue contient initialement n boules bleues et l'urne rouge n boules rouges. À chaque étape on tire une boule au hasard dans chaque urne et on échange ces deux boules d'urne.

On note Z_k le nombre de boules rouges dans l'urne rouge au bout de la k-ième étape. On a $Z_0=n$. On pose $\Delta_k=Z_{k+1}-Z_k$.

- a) Montrer que Z_k correspond aussi au nombre de boules bleues dans l'urne bleue. Déterminer la loi, l'espérance et la variance de Z_1 .
- **b**) Déterminer les valeurs possibles prisent par Z_k . Justifier que Z_k est d'espérance finie et que Z_k admet une variance.
- c) On dispose d'une fonction simul(n,k) qui simule Z_k . Écrire une fonction esp(n,k) qui donne une valeur approchée de l'espérance de Z_k à l'aide de 1000 tirages.
- d) Pour n=10,15 et 20, représenter graphiquement $(\mathbf{E}(Z_k))_{k\in \llbracket 0,30\rrbracket}$. En déduire une conjecture sur la limite de $(\mathbf{E}(Z_k))$.
- e) Montrer que $\mathbf{P}(\Delta_k = -1) = \sum_{i=0}^n \left(\frac{i}{n}\right)^2 \mathbf{P}(Z_k = i)$. Montrer une formule similaire pour $\mathbf{P}(\Delta_k = 1)$.
- f) En déduire une relation de récurrence sur les $\mathbf{E}(Z_k)$.
- g) Déterminer $\mathbf{E}(Z_k)$ en fonction des paramètres n et k et prouver la conjecture.

- **h**) Déterminer la limite de $(\mathbf{V}(Z_k))$.
- **69.** Soit $(X_i)_{i\geqslant 1}$ une suite de variables aléatoires indépendantes suivant la loi de Bernoulli de paramètre $p\in]0,1[$. Soit N une variable aléatoire à valeurs dans $\mathbb N$ indépendante des X_i .

On pose
$$S = \sum_{i=1}^{N} X_i$$
 et $M = \max(X_1, \dots X_N)$ avec $M = 0$ si $N = 0$.

- a) Montrer que M admet une espérance.
- **b)** Soit $n \in \mathbb{N}^*$. On suppose $\mathbf{P}(N=n) \neq 0$. Donner la loi de S sachant (N=n).
- c) On suppose dans cette question que $N \sim \mathcal{P}(\lambda)$.
- i) On fournit une fonction simul(p,a,b) qui renvoie un diagramme en bâtons représentant la loi $\mathcal{P}(b)$ et de S lorsque $N \sim \mathcal{P}(a)$. Essayer avec divers valeurs. Que peut on conjecturer sur la loi de S?
 - ii) Montrer cette conjecture et en déduire $\mathbf{E}(S)$.
- *d*) Une urne contient une boule blanche et une noire. On effectue des tirages successifs en respectant les règles suivantes :
- si on tire une boule blanche, on la remet et on y ajoute une boule blanche,
- si on tire une boule noire, on s'arrête.

Soit N le nombre de boules blanches à la fin de l'expérience. On fournit une fonction N(s) qui renvoie un tableau de s simulations de N.

- i) On note G la fonction génératrice de N. Écrire une fonction qui renvoie une approximation de G(x) pour $x \in [-1, 1]$.
 - ii) Représenter graphiquement G sur [-1, 1]. Conjecture?
 - iii) Représenter $x \mapsto \frac{G(x) x}{x 1} \operatorname{sur} [-1/2, 1/2].$
- **70.** Une bactérie peut se dédoubler avec probabilité $\frac{2}{3}$ ou disparaître avec probabilité $\frac{1}{3}$. On note X_n le nombre de bactéries à la n-ième étape, on suppose que $X_0=1$.
- a) Déterminer la loi et l'espérance de X_1 .
- **b**) Déterminer les valeurs que peut prendre X_n .
- ${\it c}$) Une fonction simul(n) est donnée et renvoie une liste contenant une simulation de n étapes successives de l'expérience.
- i) Écrire une fonction esp(n) qui renvoie une liste avec une moyenne des simulations des X_k pour 10000 simulations. On note $esp(n) = [m_0, \dots, m_{n-1}]$.

Représenter
$$\left(3k\frac{m_{k+1}}{m_k}\right)_{k\in \llbracket 0,20\rrbracket}$$
. Conjecture ?

- ii) Écrire une fonction proba (n) qui renvoie $[p_0, \ldots, p_{n-1}]$ où p_k est une estimation après N = 1000 simulations de la probabilité $\mathbf{P}(X_k = 0)$. Tracer $(p_k)_{k \in [0,20]}$. Conjecture?
- **d**) On note G_n la série génératrice de X_n . On admet que $G_{n+1} = G_1 \circ G_n = G_n \circ G_1$.
 - i) Donner le rayon de convergence de G_n .
 - ii) Donner G_1 .
 - iii) Démontrer votre première conjecture.
- e) i) Soit, pour $n \in \mathbb{N}$, $u_n = \mathbf{P}(X_n = 0)$. Montrer que, pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{3} + \frac{2}{3}u_n^2$.
 - ii) Démontrer la deuxième conjecture.

- 71. Soit (ε_k) une suite de variables aléatoires indépendante identiquement distribuées suivant la loi uniforme sur $\{-1,1\}$. On pose $X_n = \sum_{k=1}^n \frac{\ln k}{k} \, \varepsilon_k$.
- a) Montrer que X_n admet une espérance et une variance que l'on calculera.
- **b**) Soit, pour $n \ge 1$, $S_n = \sum_{k=0}^{n} \frac{\ln^2 k}{k^2}$. Montrer que (S_n) converge vers un réel S.
- c) Établir que, pour tout a>0, $\mathbf{P}(X_n\geqslant a)\leqslant \frac{S_n}{a^2}\leqslant \frac{S}{a^2}$.
 d) Une fonction fournie sim_X permet de simuler X_n .
- Écrire une fonction qui estime $P(M_n \ge a)$ avec 10000 essais.

Conjecturer le signe de $\mathbf{P}(M_n \geqslant a) - \frac{S_n^2}{a}$ avec $n \in \{20, 30, 50\}$ et $a \in \{2, 3, 4\}$.

- e) Montrer que $\mathbf{P}\left(\frac{M_n}{\sqrt{\ln n}} \geqslant a\right) \underset{n \to +\infty}{\longrightarrow} 0.$
- f) Soient $A_k = (X_k \geqslant a) \cap \bigcap_{\ell < k} (X_\ell < a)$ et $A_1 = (X_1 \geqslant a)$. Écrire $(M_n \geqslant a)$ avec les A_k .
- g) Montrer que $\mathbf{E}(X_k^2 \mathbf{1}_{A_k}) \geqslant a^2 \mathbf{P}(A_k)$.
- h) Montrer la conjecture obtenue précédemment.